Description: Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | axorbtnotaiffb.1 | |- ( ph \/_ ps ) |
|
Assertion | axorbtnotaiffb | |- -. ( ph <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axorbtnotaiffb.1 | |- ( ph \/_ ps ) |
|
2 | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |
|
3 | 1 2 | mpbi | |- -. ( ph <-> ps ) |