Metamath Proof Explorer


Theorem axorbtnotaiffb

Description: Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypothesis axorbtnotaiffb.1
|- ( ph \/_ ps )
Assertion axorbtnotaiffb
|- -. ( ph <-> ps )

Proof

Step Hyp Ref Expression
1 axorbtnotaiffb.1
 |-  ( ph \/_ ps )
2 df-xor
 |-  ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) )
3 1 2 mpbi
 |-  -. ( ph <-> ps )