Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpow3 | |- E. y A. z ( z C_ x <-> z e. y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axpow2 | |- E. y A. z ( z C_ x -> z e. y ) |
|
| 2 | 1 | sepexi | |- E. y A. z ( z e. y <-> z C_ x ) |
| 3 | bicom1 | |- ( ( z e. y <-> z C_ x ) -> ( z C_ x <-> z e. y ) ) |
|
| 4 | 3 | alimi | |- ( A. z ( z e. y <-> z C_ x ) -> A. z ( z C_ x <-> z e. y ) ) |
| 5 | 2 4 | eximii | |- E. y A. z ( z C_ x <-> z e. y ) |