Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | axpow3 | |- E. y A. z ( z C_ x <-> z e. y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpow2 | |- E. y A. z ( z C_ x -> z e. y ) |
|
2 | 1 | bm1.3ii | |- E. y A. z ( z e. y <-> z C_ x ) |
3 | bicom | |- ( ( z C_ x <-> z e. y ) <-> ( z e. y <-> z C_ x ) ) |
|
4 | 3 | albii | |- ( A. z ( z C_ x <-> z e. y ) <-> A. z ( z e. y <-> z C_ x ) ) |
5 | 4 | exbii | |- ( E. y A. z ( z C_ x <-> z e. y ) <-> E. y A. z ( z e. y <-> z C_ x ) ) |
6 | 2 5 | mpbir | |- E. y A. z ( z C_ x <-> z e. y ) |