Metamath Proof Explorer


Theorem axpow3

Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)

Ref Expression
Assertion axpow3
|- E. y A. z ( z C_ x <-> z e. y )

Proof

Step Hyp Ref Expression
1 axpow2
 |-  E. y A. z ( z C_ x -> z e. y )
2 1 bm1.3ii
 |-  E. y A. z ( z e. y <-> z C_ x )
3 bicom
 |-  ( ( z C_ x <-> z e. y ) <-> ( z e. y <-> z C_ x ) )
4 3 albii
 |-  ( A. z ( z C_ x <-> z e. y ) <-> A. z ( z e. y <-> z C_ x ) )
5 4 exbii
 |-  ( E. y A. z ( z C_ x <-> z e. y ) <-> E. y A. z ( z e. y <-> z C_ x ) )
6 2 5 mpbir
 |-  E. y A. z ( z C_ x <-> z e. y )