| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elreal |  |-  ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) | 
						
							| 2 |  | elreal |  |-  ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) | 
						
							| 3 |  | breq1 |  |-  ( <. x , 0R >. = A -> ( <. x , 0R >. . <-> A . ) ) | 
						
							| 4 |  | eqeq1 |  |-  ( <. x , 0R >. = A -> ( <. x , 0R >. = <. y , 0R >. <-> A = <. y , 0R >. ) ) | 
						
							| 5 |  | breq2 |  |-  ( <. x , 0R >. = A -> ( <. y , 0R >. . <-> <. y , 0R >.  | 
						
							| 6 | 4 5 | orbi12d |  |-  ( <. x , 0R >. = A -> ( ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) <-> ( A = <. y , 0R >. \/ <. y , 0R >.  | 
						
							| 7 | 6 | notbid |  |-  ( <. x , 0R >. = A -> ( -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) <-> -. ( A = <. y , 0R >. \/ <. y , 0R >.  | 
						
							| 8 | 3 7 | bibi12d |  |-  ( <. x , 0R >. = A -> ( ( <. x , 0R >. . <-> -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) ) <-> ( A . <-> -. ( A = <. y , 0R >. \/ <. y , 0R >.  | 
						
							| 9 |  | breq2 |  |-  ( <. y , 0R >. = B -> ( A . <-> A  | 
						
							| 10 |  | eqeq2 |  |-  ( <. y , 0R >. = B -> ( A = <. y , 0R >. <-> A = B ) ) | 
						
							| 11 |  | breq1 |  |-  ( <. y , 0R >. = B -> ( <. y , 0R >.  B  | 
						
							| 12 | 10 11 | orbi12d |  |-  ( <. y , 0R >. = B -> ( ( A = <. y , 0R >. \/ <. y , 0R >.  ( A = B \/ B  | 
						
							| 13 | 12 | notbid |  |-  ( <. y , 0R >. = B -> ( -. ( A = <. y , 0R >. \/ <. y , 0R >.  -. ( A = B \/ B  | 
						
							| 14 | 9 13 | bibi12d |  |-  ( <. y , 0R >. = B -> ( ( A . <-> -. ( A = <. y , 0R >. \/ <. y , 0R >.  ( A  -. ( A = B \/ B  | 
						
							| 15 |  | ltsosr |  |-   | 
						
							| 16 |  | sotric |  |-  ( (  ( x  -. ( x = y \/ y  | 
						
							| 17 | 15 16 | mpan |  |-  ( ( x e. R. /\ y e. R. ) -> ( x  -. ( x = y \/ y  | 
						
							| 18 |  | ltresr |  |-  ( <. x , 0R >. . <-> x  | 
						
							| 19 |  | vex |  |-  x e. _V | 
						
							| 20 | 19 | eqresr |  |-  ( <. x , 0R >. = <. y , 0R >. <-> x = y ) | 
						
							| 21 |  | ltresr |  |-  ( <. y , 0R >. . <-> y  | 
						
							| 22 | 20 21 | orbi12i |  |-  ( ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) <-> ( x = y \/ y  | 
						
							| 23 | 22 | notbii |  |-  ( -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) <-> -. ( x = y \/ y  | 
						
							| 24 | 17 18 23 | 3bitr4g |  |-  ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. . <-> -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. . ) ) ) | 
						
							| 25 | 1 2 8 14 24 | 2gencl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A  -. ( A = B \/ B  |