Step |
Hyp |
Ref |
Expression |
1 |
|
elreal |
|- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
2 |
|
elreal |
|- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
3 |
|
elreal |
|- ( C e. RR <-> E. z e. R. <. z , 0R >. = C ) |
4 |
|
breq1 |
|- ( <. x , 0R >. = A -> ( <. x , 0R >. . <-> A . ) ) |
5 |
4
|
anbi1d |
|- ( <. x , 0R >. = A -> ( ( <. x , 0R >. . /\ <. y , 0R >. . ) <-> ( A . /\ <. y , 0R >. . ) ) ) |
6 |
|
breq1 |
|- ( <. x , 0R >. = A -> ( <. x , 0R >. . <-> A . ) ) |
7 |
5 6
|
imbi12d |
|- ( <. x , 0R >. = A -> ( ( ( <. x , 0R >. . /\ <. y , 0R >. . ) -> <. x , 0R >. . ) <-> ( ( A . /\ <. y , 0R >. . ) -> A . ) ) ) |
8 |
|
breq2 |
|- ( <. y , 0R >. = B -> ( A . <-> A |
9 |
|
breq1 |
|- ( <. y , 0R >. = B -> ( <. y , 0R >. . <-> B . ) ) |
10 |
8 9
|
anbi12d |
|- ( <. y , 0R >. = B -> ( ( A . /\ <. y , 0R >. . ) <-> ( A . ) ) ) |
11 |
10
|
imbi1d |
|- ( <. y , 0R >. = B -> ( ( ( A . /\ <. y , 0R >. . ) -> A . ) <-> ( ( A . ) -> A . ) ) ) |
12 |
|
breq2 |
|- ( <. z , 0R >. = C -> ( B . <-> B |
13 |
12
|
anbi2d |
|- ( <. z , 0R >. = C -> ( ( A . ) <-> ( A |
14 |
|
breq2 |
|- ( <. z , 0R >. = C -> ( A . <-> A |
15 |
13 14
|
imbi12d |
|- ( <. z , 0R >. = C -> ( ( ( A . ) -> A . ) <-> ( ( A A |
16 |
|
ltresr |
|- ( <. x , 0R >. . <-> x |
17 |
|
ltresr |
|- ( <. y , 0R >. . <-> y |
18 |
|
ltsosr |
|- |
19 |
|
ltrelsr |
|- |
20 |
18 19
|
sotri |
|- ( ( x x |
21 |
16 17 20
|
syl2anb |
|- ( ( <. x , 0R >. . /\ <. y , 0R >. . ) -> x |
22 |
|
ltresr |
|- ( <. x , 0R >. . <-> x |
23 |
21 22
|
sylibr |
|- ( ( <. x , 0R >. . /\ <. y , 0R >. . ) -> <. x , 0R >. . ) |
24 |
23
|
a1i |
|- ( ( x e. R. /\ y e. R. /\ z e. R. ) -> ( ( <. x , 0R >. . /\ <. y , 0R >. . ) -> <. x , 0R >. . ) ) |
25 |
1 2 3 7 11 15 24
|
3gencl |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A A |