Step |
Hyp |
Ref |
Expression |
1 |
|
elreal |
|- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
2 |
|
elreal |
|- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
3 |
|
breq2 |
|- ( <. x , 0R >. = A -> ( 0 . <-> 0 |
4 |
3
|
anbi1d |
|- ( <. x , 0R >. = A -> ( ( 0 . /\ 0 . ) <-> ( 0 . ) ) ) |
5 |
|
oveq1 |
|- ( <. x , 0R >. = A -> ( <. x , 0R >. x. <. y , 0R >. ) = ( A x. <. y , 0R >. ) ) |
6 |
5
|
breq2d |
|- ( <. x , 0R >. = A -> ( 0 . x. <. y , 0R >. ) <-> 0 . ) ) ) |
7 |
4 6
|
imbi12d |
|- ( <. x , 0R >. = A -> ( ( ( 0 . /\ 0 . ) -> 0 . x. <. y , 0R >. ) ) <-> ( ( 0 . ) -> 0 . ) ) ) ) |
8 |
|
breq2 |
|- ( <. y , 0R >. = B -> ( 0 . <-> 0 |
9 |
8
|
anbi2d |
|- ( <. y , 0R >. = B -> ( ( 0 . ) <-> ( 0 |
10 |
|
oveq2 |
|- ( <. y , 0R >. = B -> ( A x. <. y , 0R >. ) = ( A x. B ) ) |
11 |
10
|
breq2d |
|- ( <. y , 0R >. = B -> ( 0 . ) <-> 0 |
12 |
9 11
|
imbi12d |
|- ( <. y , 0R >. = B -> ( ( ( 0 . ) -> 0 . ) ) <-> ( ( 0 0 |
13 |
|
df-0 |
|- 0 = <. 0R , 0R >. |
14 |
13
|
breq1i |
|- ( 0 . <-> <. 0R , 0R >. . ) |
15 |
|
ltresr |
|- ( <. 0R , 0R >. . <-> 0R |
16 |
14 15
|
bitri |
|- ( 0 . <-> 0R |
17 |
13
|
breq1i |
|- ( 0 . <-> <. 0R , 0R >. . ) |
18 |
|
ltresr |
|- ( <. 0R , 0R >. . <-> 0R |
19 |
17 18
|
bitri |
|- ( 0 . <-> 0R |
20 |
|
mulgt0sr |
|- ( ( 0R 0R |
21 |
16 19 20
|
syl2anb |
|- ( ( 0 . /\ 0 . ) -> 0R |
22 |
13
|
a1i |
|- ( ( x e. R. /\ y e. R. ) -> 0 = <. 0R , 0R >. ) |
23 |
|
mulresr |
|- ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. x. <. y , 0R >. ) = <. ( x .R y ) , 0R >. ) |
24 |
22 23
|
breq12d |
|- ( ( x e. R. /\ y e. R. ) -> ( 0 . x. <. y , 0R >. ) <-> <. 0R , 0R >. . ) ) |
25 |
|
ltresr |
|- ( <. 0R , 0R >. . <-> 0R |
26 |
24 25
|
bitrdi |
|- ( ( x e. R. /\ y e. R. ) -> ( 0 . x. <. y , 0R >. ) <-> 0R |
27 |
21 26
|
syl5ibr |
|- ( ( x e. R. /\ y e. R. ) -> ( ( 0 . /\ 0 . ) -> 0 . x. <. y , 0R >. ) ) ) |
28 |
1 2 7 12 27
|
2gencl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 0 |