Metamath Proof Explorer


Theorem axpre-sup

Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion axpre-sup
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y  E. x e. RR ( A. y e. A -. x  E. z e. A y 

Proof

Step Hyp Ref Expression
1 elreal2
 |-  ( x e. RR <-> ( ( 1st ` x ) e. R. /\ x = <. ( 1st ` x ) , 0R >. ) )
2 1 simplbi
 |-  ( x e. RR -> ( 1st ` x ) e. R. )
3 2 adantl
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( 1st ` x ) e. R. )
4 fo1st
 |-  1st : _V -onto-> _V
5 fof
 |-  ( 1st : _V -onto-> _V -> 1st : _V --> _V )
6 ffn
 |-  ( 1st : _V --> _V -> 1st Fn _V )
7 4 5 6 mp2b
 |-  1st Fn _V
8 ssv
 |-  A C_ _V
9 fvelimab
 |-  ( ( 1st Fn _V /\ A C_ _V ) -> ( w e. ( 1st " A ) <-> E. y e. A ( 1st ` y ) = w ) )
10 7 8 9 mp2an
 |-  ( w e. ( 1st " A ) <-> E. y e. A ( 1st ` y ) = w )
11 r19.29
 |-  ( ( A. y e. A y  E. y e. A ( y 
12 ssel2
 |-  ( ( A C_ RR /\ y e. A ) -> y e. RR )
13 ltresr2
 |-  ( ( y e. RR /\ x e. RR ) -> ( y  ( 1st ` y ) 
14 breq1
 |-  ( ( 1st ` y ) = w -> ( ( 1st ` y )  w 
15 13 14 sylan9bb
 |-  ( ( ( y e. RR /\ x e. RR ) /\ ( 1st ` y ) = w ) -> ( y  w 
16 15 biimpd
 |-  ( ( ( y e. RR /\ x e. RR ) /\ ( 1st ` y ) = w ) -> ( y  w 
17 16 exp31
 |-  ( y e. RR -> ( x e. RR -> ( ( 1st ` y ) = w -> ( y  w 
18 12 17 syl
 |-  ( ( A C_ RR /\ y e. A ) -> ( x e. RR -> ( ( 1st ` y ) = w -> ( y  w 
19 18 imp4b
 |-  ( ( ( A C_ RR /\ y e. A ) /\ x e. RR ) -> ( ( ( 1st ` y ) = w /\ y  w 
20 19 ancomsd
 |-  ( ( ( A C_ RR /\ y e. A ) /\ x e. RR ) -> ( ( y  w 
21 20 an32s
 |-  ( ( ( A C_ RR /\ x e. RR ) /\ y e. A ) -> ( ( y  w 
22 21 rexlimdva
 |-  ( ( A C_ RR /\ x e. RR ) -> ( E. y e. A ( y  w 
23 11 22 syl5
 |-  ( ( A C_ RR /\ x e. RR ) -> ( ( A. y e. A y  w 
24 23 expd
 |-  ( ( A C_ RR /\ x e. RR ) -> ( A. y e. A y  ( E. y e. A ( 1st ` y ) = w -> w 
25 10 24 syl7bi
 |-  ( ( A C_ RR /\ x e. RR ) -> ( A. y e. A y  ( w e. ( 1st " A ) -> w 
26 25 impr
 |-  ( ( A C_ RR /\ ( x e. RR /\ A. y e. A y  ( w e. ( 1st " A ) -> w 
27 26 adantlr
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ ( x e. RR /\ A. y e. A y  ( w e. ( 1st " A ) -> w 
28 27 ralrimiv
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ ( x e. RR /\ A. y e. A y  A. w e. ( 1st " A ) w 
29 28 expr
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( A. y e. A y  A. w e. ( 1st " A ) w 
30 brralrspcev
 |-  ( ( ( 1st ` x ) e. R. /\ A. w e. ( 1st " A ) w  E. v e. R. A. w e. ( 1st " A ) w 
31 3 29 30 syl6an
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( A. y e. A y  E. v e. R. A. w e. ( 1st " A ) w 
32 31 rexlimdva
 |-  ( ( A C_ RR /\ A =/= (/) ) -> ( E. x e. RR A. y e. A y  E. v e. R. A. w e. ( 1st " A ) w 
33 n0
 |-  ( A =/= (/) <-> E. y y e. A )
34 fnfvima
 |-  ( ( 1st Fn _V /\ A C_ _V /\ y e. A ) -> ( 1st ` y ) e. ( 1st " A ) )
35 7 8 34 mp3an12
 |-  ( y e. A -> ( 1st ` y ) e. ( 1st " A ) )
36 35 ne0d
 |-  ( y e. A -> ( 1st " A ) =/= (/) )
37 36 exlimiv
 |-  ( E. y y e. A -> ( 1st " A ) =/= (/) )
38 33 37 sylbi
 |-  ( A =/= (/) -> ( 1st " A ) =/= (/) )
39 supsr
 |-  ( ( ( 1st " A ) =/= (/) /\ E. v e. R. A. w e. ( 1st " A ) w  E. v e. R. ( A. w e. ( 1st " A ) -. v  E. u e. ( 1st " A ) w 
40 39 ex
 |-  ( ( 1st " A ) =/= (/) -> ( E. v e. R. A. w e. ( 1st " A ) w  E. v e. R. ( A. w e. ( 1st " A ) -. v  E. u e. ( 1st " A ) w 
41 38 40 syl
 |-  ( A =/= (/) -> ( E. v e. R. A. w e. ( 1st " A ) w  E. v e. R. ( A. w e. ( 1st " A ) -. v  E. u e. ( 1st " A ) w 
42 41 adantl
 |-  ( ( A C_ RR /\ A =/= (/) ) -> ( E. v e. R. A. w e. ( 1st " A ) w  E. v e. R. ( A. w e. ( 1st " A ) -. v  E. u e. ( 1st " A ) w 
43 breq2
 |-  ( w = ( 1st ` y ) -> ( v  v 
44 43 notbid
 |-  ( w = ( 1st ` y ) -> ( -. v  -. v 
45 44 rspccv
 |-  ( A. w e. ( 1st " A ) -. v  ( ( 1st ` y ) e. ( 1st " A ) -> -. v 
46 35 45 syl5com
 |-  ( y e. A -> ( A. w e. ( 1st " A ) -. v  -. v 
47 46 adantl
 |-  ( ( A C_ RR /\ y e. A ) -> ( A. w e. ( 1st " A ) -. v  -. v 
48 elreal2
 |-  ( y e. RR <-> ( ( 1st ` y ) e. R. /\ y = <. ( 1st ` y ) , 0R >. ) )
49 48 simprbi
 |-  ( y e. RR -> y = <. ( 1st ` y ) , 0R >. )
50 49 breq2d
 |-  ( y e. RR -> ( <. v , 0R >.  <. v , 0R >. . ) )
51 ltresr
 |-  ( <. v , 0R >. . <-> v 
52 50 51 bitrdi
 |-  ( y e. RR -> ( <. v , 0R >.  v 
53 12 52 syl
 |-  ( ( A C_ RR /\ y e. A ) -> ( <. v , 0R >.  v 
54 53 notbid
 |-  ( ( A C_ RR /\ y e. A ) -> ( -. <. v , 0R >.  -. v 
55 47 54 sylibrd
 |-  ( ( A C_ RR /\ y e. A ) -> ( A. w e. ( 1st " A ) -. v  -. <. v , 0R >. 
56 55 ralrimdva
 |-  ( A C_ RR -> ( A. w e. ( 1st " A ) -. v  A. y e. A -. <. v , 0R >. 
57 56 ad2antrr
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. ( 1st " A ) -. v  A. y e. A -. <. v , 0R >. 
58 49 breq1d
 |-  ( y e. RR -> ( y . <-> <. ( 1st ` y ) , 0R >. . ) )
59 ltresr
 |-  ( <. ( 1st ` y ) , 0R >. . <-> ( 1st ` y ) 
60 58 59 bitrdi
 |-  ( y e. RR -> ( y . <-> ( 1st ` y ) 
61 48 simplbi
 |-  ( y e. RR -> ( 1st ` y ) e. R. )
62 breq1
 |-  ( w = ( 1st ` y ) -> ( w  ( 1st ` y ) 
63 breq1
 |-  ( w = ( 1st ` y ) -> ( w  ( 1st ` y ) 
64 63 rexbidv
 |-  ( w = ( 1st ` y ) -> ( E. u e. ( 1st " A ) w  E. u e. ( 1st " A ) ( 1st ` y ) 
65 62 64 imbi12d
 |-  ( w = ( 1st ` y ) -> ( ( w  E. u e. ( 1st " A ) w  ( ( 1st ` y )  E. u e. ( 1st " A ) ( 1st ` y ) 
66 65 rspccv
 |-  ( A. w e. R. ( w  E. u e. ( 1st " A ) w  ( ( 1st ` y ) e. R. -> ( ( 1st ` y )  E. u e. ( 1st " A ) ( 1st ` y ) 
67 61 66 syl5
 |-  ( A. w e. R. ( w  E. u e. ( 1st " A ) w  ( y e. RR -> ( ( 1st ` y )  E. u e. ( 1st " A ) ( 1st ` y ) 
68 67 com3l
 |-  ( y e. RR -> ( ( 1st ` y )  ( A. w e. R. ( w  E. u e. ( 1st " A ) w  E. u e. ( 1st " A ) ( 1st ` y ) 
69 60 68 sylbid
 |-  ( y e. RR -> ( y . -> ( A. w e. R. ( w  E. u e. ( 1st " A ) w  E. u e. ( 1st " A ) ( 1st ` y ) 
70 69 adantr
 |-  ( ( y e. RR /\ A C_ RR ) -> ( y . -> ( A. w e. R. ( w  E. u e. ( 1st " A ) w  E. u e. ( 1st " A ) ( 1st ` y ) 
71 fvelimab
 |-  ( ( 1st Fn _V /\ A C_ _V ) -> ( u e. ( 1st " A ) <-> E. z e. A ( 1st ` z ) = u ) )
72 7 8 71 mp2an
 |-  ( u e. ( 1st " A ) <-> E. z e. A ( 1st ` z ) = u )
73 ssel2
 |-  ( ( A C_ RR /\ z e. A ) -> z e. RR )
74 ltresr2
 |-  ( ( y e. RR /\ z e. RR ) -> ( y  ( 1st ` y ) 
75 73 74 sylan2
 |-  ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) -> ( y  ( 1st ` y ) 
76 breq2
 |-  ( ( 1st ` z ) = u -> ( ( 1st ` y )  ( 1st ` y ) 
77 75 76 sylan9bb
 |-  ( ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) /\ ( 1st ` z ) = u ) -> ( y  ( 1st ` y ) 
78 77 exbiri
 |-  ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) -> ( ( 1st ` z ) = u -> ( ( 1st ` y )  y 
79 78 expr
 |-  ( ( y e. RR /\ A C_ RR ) -> ( z e. A -> ( ( 1st ` z ) = u -> ( ( 1st ` y )  y 
80 79 com4r
 |-  ( ( 1st ` y )  ( ( y e. RR /\ A C_ RR ) -> ( z e. A -> ( ( 1st ` z ) = u -> y 
81 80 imp
 |-  ( ( ( 1st ` y )  ( z e. A -> ( ( 1st ` z ) = u -> y 
82 81 reximdvai
 |-  ( ( ( 1st ` y )  ( E. z e. A ( 1st ` z ) = u -> E. z e. A y 
83 72 82 syl5bi
 |-  ( ( ( 1st ` y )  ( u e. ( 1st " A ) -> E. z e. A y 
84 83 expcom
 |-  ( ( y e. RR /\ A C_ RR ) -> ( ( 1st ` y )  ( u e. ( 1st " A ) -> E. z e. A y 
85 84 com23
 |-  ( ( y e. RR /\ A C_ RR ) -> ( u e. ( 1st " A ) -> ( ( 1st ` y )  E. z e. A y 
86 85 rexlimdv
 |-  ( ( y e. RR /\ A C_ RR ) -> ( E. u e. ( 1st " A ) ( 1st ` y )  E. z e. A y 
87 70 86 syl6d
 |-  ( ( y e. RR /\ A C_ RR ) -> ( y . -> ( A. w e. R. ( w  E. u e. ( 1st " A ) w  E. z e. A y 
88 87 com23
 |-  ( ( y e. RR /\ A C_ RR ) -> ( A. w e. R. ( w  E. u e. ( 1st " A ) w  ( y . -> E. z e. A y 
89 88 ex
 |-  ( y e. RR -> ( A C_ RR -> ( A. w e. R. ( w  E. u e. ( 1st " A ) w  ( y . -> E. z e. A y 
90 89 com3l
 |-  ( A C_ RR -> ( A. w e. R. ( w  E. u e. ( 1st " A ) w  ( y e. RR -> ( y . -> E. z e. A y 
91 90 ad2antrr
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. R. ( w  E. u e. ( 1st " A ) w  ( y e. RR -> ( y . -> E. z e. A y 
92 91 ralrimdv
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. R. ( w  E. u e. ( 1st " A ) w  A. y e. RR ( y . -> E. z e. A y 
93 opelreal
 |-  ( <. v , 0R >. e. RR <-> v e. R. )
94 93 biimpri
 |-  ( v e. R. -> <. v , 0R >. e. RR )
95 94 adantl
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> <. v , 0R >. e. RR )
96 breq1
 |-  ( x = <. v , 0R >. -> ( x  <. v , 0R >. 
97 96 notbid
 |-  ( x = <. v , 0R >. -> ( -. x  -. <. v , 0R >. 
98 97 ralbidv
 |-  ( x = <. v , 0R >. -> ( A. y e. A -. x  A. y e. A -. <. v , 0R >. 
99 breq2
 |-  ( x = <. v , 0R >. -> ( y  y . ) )
100 99 imbi1d
 |-  ( x = <. v , 0R >. -> ( ( y  E. z e. A y  ( y . -> E. z e. A y 
101 100 ralbidv
 |-  ( x = <. v , 0R >. -> ( A. y e. RR ( y  E. z e. A y  A. y e. RR ( y . -> E. z e. A y 
102 98 101 anbi12d
 |-  ( x = <. v , 0R >. -> ( ( A. y e. A -. x  E. z e. A y  ( A. y e. A -. <. v , 0R >. . -> E. z e. A y 
103 102 rspcev
 |-  ( ( <. v , 0R >. e. RR /\ ( A. y e. A -. <. v , 0R >. . -> E. z e. A y  E. x e. RR ( A. y e. A -. x  E. z e. A y 
104 103 ex
 |-  ( <. v , 0R >. e. RR -> ( ( A. y e. A -. <. v , 0R >. . -> E. z e. A y  E. x e. RR ( A. y e. A -. x  E. z e. A y 
105 95 104 syl
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( ( A. y e. A -. <. v , 0R >. . -> E. z e. A y  E. x e. RR ( A. y e. A -. x  E. z e. A y 
106 57 92 105 syl2and
 |-  ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( ( A. w e. ( 1st " A ) -. v  E. u e. ( 1st " A ) w  E. x e. RR ( A. y e. A -. x  E. z e. A y 
107 106 rexlimdva
 |-  ( ( A C_ RR /\ A =/= (/) ) -> ( E. v e. R. ( A. w e. ( 1st " A ) -. v  E. u e. ( 1st " A ) w  E. x e. RR ( A. y e. A -. x  E. z e. A y 
108 32 42 107 3syld
 |-  ( ( A C_ RR /\ A =/= (/) ) -> ( E. x e. RR A. y e. A y  E. x e. RR ( A. y e. A -. x  E. z e. A y 
109 108 3impia
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y  E. x e. RR ( A. y e. A -. x  E. z e. A y