Step |
Hyp |
Ref |
Expression |
1 |
|
axrep4v |
|- ( A. s E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) -> E. z A. w ( w e. z <-> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) ) |
2 |
|
ifptru |
|- ( E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) <-> w = x ) ) |
3 |
2
|
biimpd |
|- ( E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = x ) ) |
4 |
|
equeuclr |
|- ( z = x -> ( w = x -> w = z ) ) |
5 |
3 4
|
syl9r |
|- ( z = x -> ( E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
6 |
5
|
alrimdv |
|- ( z = x -> ( E. n n e. s -> A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
7 |
6
|
spimevw |
|- ( E. n n e. s -> E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
8 |
|
ifpfal |
|- ( -. E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) <-> w = y ) ) |
9 |
8
|
biimpd |
|- ( -. E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = y ) ) |
10 |
|
equeuclr |
|- ( z = y -> ( w = y -> w = z ) ) |
11 |
9 10
|
syl9r |
|- ( z = y -> ( -. E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
12 |
11
|
alrimdv |
|- ( z = y -> ( -. E. n n e. s -> A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
13 |
12
|
spimevw |
|- ( -. E. n n e. s -> E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
14 |
7 13
|
pm2.61i |
|- E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) |
15 |
1 14
|
mpg |
|- E. z A. w ( w e. z <-> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) |