Metamath Proof Explorer


Theorem axresscn

Description: The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn . (Contributed by NM, 1-Mar-1995) (Proof shortened by Andrew Salmon, 12-Aug-2011) (New usage is discouraged.)

Ref Expression
Assertion axresscn
|- RR C_ CC

Proof

Step Hyp Ref Expression
1 0r
 |-  0R e. R.
2 snssi
 |-  ( 0R e. R. -> { 0R } C_ R. )
3 xpss2
 |-  ( { 0R } C_ R. -> ( R. X. { 0R } ) C_ ( R. X. R. ) )
4 1 2 3 mp2b
 |-  ( R. X. { 0R } ) C_ ( R. X. R. )
5 df-r
 |-  RR = ( R. X. { 0R } )
6 df-c
 |-  CC = ( R. X. R. )
7 4 5 6 3sstr4i
 |-  RR C_ CC