| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elreal2 |
|- ( A e. RR <-> ( ( 1st ` A ) e. R. /\ A = <. ( 1st ` A ) , 0R >. ) ) |
| 2 |
1
|
simplbi |
|- ( A e. RR -> ( 1st ` A ) e. R. ) |
| 3 |
|
m1r |
|- -1R e. R. |
| 4 |
|
mulclsr |
|- ( ( ( 1st ` A ) e. R. /\ -1R e. R. ) -> ( ( 1st ` A ) .R -1R ) e. R. ) |
| 5 |
2 3 4
|
sylancl |
|- ( A e. RR -> ( ( 1st ` A ) .R -1R ) e. R. ) |
| 6 |
|
opelreal |
|- ( <. ( ( 1st ` A ) .R -1R ) , 0R >. e. RR <-> ( ( 1st ` A ) .R -1R ) e. R. ) |
| 7 |
5 6
|
sylibr |
|- ( A e. RR -> <. ( ( 1st ` A ) .R -1R ) , 0R >. e. RR ) |
| 8 |
1
|
simprbi |
|- ( A e. RR -> A = <. ( 1st ` A ) , 0R >. ) |
| 9 |
8
|
oveq1d |
|- ( A e. RR -> ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = ( <. ( 1st ` A ) , 0R >. + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) ) |
| 10 |
|
addresr |
|- ( ( ( 1st ` A ) e. R. /\ ( ( 1st ` A ) .R -1R ) e. R. ) -> ( <. ( 1st ` A ) , 0R >. + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. ) |
| 11 |
2 5 10
|
syl2anc |
|- ( A e. RR -> ( <. ( 1st ` A ) , 0R >. + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. ) |
| 12 |
|
pn0sr |
|- ( ( 1st ` A ) e. R. -> ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) = 0R ) |
| 13 |
12
|
opeq1d |
|- ( ( 1st ` A ) e. R. -> <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. = <. 0R , 0R >. ) |
| 14 |
|
df-0 |
|- 0 = <. 0R , 0R >. |
| 15 |
13 14
|
eqtr4di |
|- ( ( 1st ` A ) e. R. -> <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. = 0 ) |
| 16 |
2 15
|
syl |
|- ( A e. RR -> <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. = 0 ) |
| 17 |
9 11 16
|
3eqtrd |
|- ( A e. RR -> ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = 0 ) |
| 18 |
|
oveq2 |
|- ( x = <. ( ( 1st ` A ) .R -1R ) , 0R >. -> ( A + x ) = ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) ) |
| 19 |
18
|
eqeq1d |
|- ( x = <. ( ( 1st ` A ) .R -1R ) , 0R >. -> ( ( A + x ) = 0 <-> ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = 0 ) ) |
| 20 |
19
|
rspcev |
|- ( ( <. ( ( 1st ` A ) .R -1R ) , 0R >. e. RR /\ ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = 0 ) -> E. x e. RR ( A + x ) = 0 ) |
| 21 |
7 17 20
|
syl2anc |
|- ( A e. RR -> E. x e. RR ( A + x ) = 0 ) |