| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. RR ) |
| 2 |
1
|
3ad2antl1 |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. RR ) |
| 3 |
|
fveere |
|- ( ( C e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( C ` k ) e. RR ) |
| 4 |
3
|
3ad2antl2 |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ k e. ( 1 ... N ) ) -> ( C ` k ) e. RR ) |
| 5 |
|
fveere |
|- ( ( D e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( D ` k ) e. RR ) |
| 6 |
5
|
3ad2antl3 |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ k e. ( 1 ... N ) ) -> ( D ` k ) e. RR ) |
| 7 |
4 6
|
resubcld |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ k e. ( 1 ... N ) ) -> ( ( C ` k ) - ( D ` k ) ) e. RR ) |
| 8 |
2 7
|
resubcld |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ k e. ( 1 ... N ) ) -> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) e. RR ) |
| 9 |
8
|
ralrimiva |
|- ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> A. k e. ( 1 ... N ) ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) e. RR ) |
| 10 |
|
eleenn |
|- ( B e. ( EE ` N ) -> N e. NN ) |
| 11 |
|
mptelee |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) e. RR ) ) |
| 12 |
10 11
|
syl |
|- ( B e. ( EE ` N ) -> ( ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) e. RR ) ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) e. RR ) ) |
| 14 |
9 13
|
mpbird |
|- ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) e. ( EE ` N ) ) |
| 15 |
|
fveecn |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
| 16 |
15
|
3ad2antl1 |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
| 17 |
|
fveecn |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) |
| 18 |
17
|
3ad2antl2 |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) |
| 19 |
|
fveecn |
|- ( ( D e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( D ` i ) e. CC ) |
| 20 |
19
|
3ad2antl3 |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( D ` i ) e. CC ) |
| 21 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 22 |
21
|
oveq1i |
|- ( ( 1 - 0 ) x. ( B ` i ) ) = ( 1 x. ( B ` i ) ) |
| 23 |
|
mullid |
|- ( ( B ` i ) e. CC -> ( 1 x. ( B ` i ) ) = ( B ` i ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( ( B ` i ) e. CC /\ ( C ` i ) e. CC /\ ( D ` i ) e. CC ) -> ( 1 x. ( B ` i ) ) = ( B ` i ) ) |
| 25 |
22 24
|
eqtrid |
|- ( ( ( B ` i ) e. CC /\ ( C ` i ) e. CC /\ ( D ` i ) e. CC ) -> ( ( 1 - 0 ) x. ( B ` i ) ) = ( B ` i ) ) |
| 26 |
|
subcl |
|- ( ( ( C ` i ) e. CC /\ ( D ` i ) e. CC ) -> ( ( C ` i ) - ( D ` i ) ) e. CC ) |
| 27 |
|
subcl |
|- ( ( ( B ` i ) e. CC /\ ( ( C ` i ) - ( D ` i ) ) e. CC ) -> ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) e. CC ) |
| 28 |
26 27
|
sylan2 |
|- ( ( ( B ` i ) e. CC /\ ( ( C ` i ) e. CC /\ ( D ` i ) e. CC ) ) -> ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) e. CC ) |
| 29 |
28
|
3impb |
|- ( ( ( B ` i ) e. CC /\ ( C ` i ) e. CC /\ ( D ` i ) e. CC ) -> ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) e. CC ) |
| 30 |
29
|
mul02d |
|- ( ( ( B ` i ) e. CC /\ ( C ` i ) e. CC /\ ( D ` i ) e. CC ) -> ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) = 0 ) |
| 31 |
25 30
|
oveq12d |
|- ( ( ( B ` i ) e. CC /\ ( C ` i ) e. CC /\ ( D ` i ) e. CC ) -> ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) = ( ( B ` i ) + 0 ) ) |
| 32 |
|
addrid |
|- ( ( B ` i ) e. CC -> ( ( B ` i ) + 0 ) = ( B ` i ) ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( ( B ` i ) e. CC /\ ( C ` i ) e. CC /\ ( D ` i ) e. CC ) -> ( ( B ` i ) + 0 ) = ( B ` i ) ) |
| 34 |
31 33
|
eqtr2d |
|- ( ( ( B ` i ) e. CC /\ ( C ` i ) e. CC /\ ( D ` i ) e. CC ) -> ( B ` i ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) |
| 35 |
16 18 20 34
|
syl3anc |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) |
| 36 |
35
|
ralrimiva |
|- ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) |
| 37 |
18 20
|
subcld |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( C ` i ) - ( D ` i ) ) e. CC ) |
| 38 |
16 37
|
nncand |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) = ( ( C ` i ) - ( D ` i ) ) ) |
| 39 |
38
|
oveq1d |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) = ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
| 40 |
39
|
sumeq2dv |
|- ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
| 41 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 42 |
|
fveq1 |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) -> ( x ` i ) = ( ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) ` i ) ) |
| 43 |
|
fveq2 |
|- ( k = i -> ( B ` k ) = ( B ` i ) ) |
| 44 |
|
fveq2 |
|- ( k = i -> ( C ` k ) = ( C ` i ) ) |
| 45 |
|
fveq2 |
|- ( k = i -> ( D ` k ) = ( D ` i ) ) |
| 46 |
44 45
|
oveq12d |
|- ( k = i -> ( ( C ` k ) - ( D ` k ) ) = ( ( C ` i ) - ( D ` i ) ) ) |
| 47 |
43 46
|
oveq12d |
|- ( k = i -> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) = ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) |
| 48 |
|
eqid |
|- ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) |
| 49 |
|
ovex |
|- ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) e. _V |
| 50 |
47 48 49
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) ` i ) = ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) |
| 51 |
42 50
|
sylan9eq |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) |
| 52 |
51
|
oveq2d |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( t x. ( x ` i ) ) = ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) |
| 53 |
52
|
oveq2d |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) |
| 54 |
53
|
eqeq2d |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) <-> ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) ) |
| 55 |
54
|
ralbidva |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) ) |
| 56 |
51
|
oveq2d |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( x ` i ) ) = ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) |
| 57 |
56
|
oveq1d |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) ) |
| 58 |
57
|
sumeq2dv |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) ) |
| 59 |
58
|
eqeq1d |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
| 60 |
55 59
|
anbi12d |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) -> ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) <-> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) ) |
| 61 |
|
oveq2 |
|- ( t = 0 -> ( 1 - t ) = ( 1 - 0 ) ) |
| 62 |
61
|
oveq1d |
|- ( t = 0 -> ( ( 1 - t ) x. ( B ` i ) ) = ( ( 1 - 0 ) x. ( B ` i ) ) ) |
| 63 |
|
oveq1 |
|- ( t = 0 -> ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) = ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) |
| 64 |
62 63
|
oveq12d |
|- ( t = 0 -> ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) |
| 65 |
64
|
eqeq2d |
|- ( t = 0 -> ( ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) <-> ( B ` i ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) ) |
| 66 |
65
|
ralbidv |
|- ( t = 0 -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) ) ) |
| 67 |
66
|
anbi1d |
|- ( t = 0 -> ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) <-> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) ) |
| 68 |
60 67
|
rspc2ev |
|- ( ( ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) e. ( EE ` N ) /\ 0 e. ( 0 [,] 1 ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) -> E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
| 69 |
41 68
|
mp3an2 |
|- ( ( ( k e. ( 1 ... N ) |-> ( ( B ` k ) - ( ( C ` k ) - ( D ` k ) ) ) ) e. ( EE ` N ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - 0 ) x. ( B ` i ) ) + ( 0 x. ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( ( B ` i ) - ( ( C ` i ) - ( D ` i ) ) ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) -> E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
| 70 |
14 36 40 69
|
syl12anc |
|- ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
| 71 |
70
|
3expb |
|- ( ( B e. ( EE ` N ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
| 72 |
71
|
adantll |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
| 73 |
|
fveq1 |
|- ( A = B -> ( A ` i ) = ( B ` i ) ) |
| 74 |
73
|
oveq2d |
|- ( A = B -> ( ( 1 - t ) x. ( A ` i ) ) = ( ( 1 - t ) x. ( B ` i ) ) ) |
| 75 |
74
|
oveq1d |
|- ( A = B -> ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( x ` i ) ) ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) ) |
| 76 |
75
|
eqeq2d |
|- ( A = B -> ( ( B ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( x ` i ) ) ) <-> ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) ) ) |
| 77 |
76
|
ralbidv |
|- ( A = B -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( x ` i ) ) ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) ) ) |
| 78 |
77
|
anbi1d |
|- ( A = B -> ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) <-> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) ) |
| 79 |
78
|
2rexbidv |
|- ( A = B -> ( E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) <-> E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) ) |
| 80 |
72 79
|
imbitrrid |
|- ( A = B -> ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) ) |
| 81 |
80
|
imp |
|- ( ( A = B /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> E. x e. ( EE ` N ) E. t e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( x ` i ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( x ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |