| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axsegconlem2.1 |
|- S = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) |
| 2 |
|
axsegconlem7.2 |
|- T = sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) |
| 3 |
|
axsegconlem8.3 |
|- F = ( k e. ( 1 ... N ) |-> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) ) |
| 4 |
2
|
axsegconlem4 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( sqrt ` T ) e. RR ) |
| 5 |
4
|
ad2antlr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. RR ) |
| 6 |
|
simpl1 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 7 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
| 8 |
6 7
|
sylan |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
| 9 |
5 8
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. RR ) |
| 10 |
9
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. CC ) |
| 11 |
1
|
axsegconlem4 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sqrt ` S ) e. RR ) |
| 12 |
11
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) e. RR ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. RR ) |
| 14 |
1 2 3
|
axsegconlem8 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) |
| 15 |
|
fveere |
|- ( ( F e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. RR ) |
| 16 |
14 15
|
sylan |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. RR ) |
| 17 |
13 16
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( F ` i ) ) e. RR ) |
| 18 |
17
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( F ` i ) ) e. CC ) |
| 19 |
|
readdcl |
|- ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
| 20 |
12 4 19
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
| 21 |
20
|
adantr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
| 22 |
21
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. CC ) |
| 23 |
|
0red |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 e. RR ) |
| 24 |
12
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sqrt ` S ) e. RR ) |
| 25 |
1
|
axsegconlem6 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 < ( sqrt ` S ) ) |
| 26 |
25
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 < ( sqrt ` S ) ) |
| 27 |
2
|
axsegconlem5 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> 0 <_ ( sqrt ` T ) ) |
| 28 |
27
|
adantl |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 <_ ( sqrt ` T ) ) |
| 29 |
|
addge01 |
|- ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( 0 <_ ( sqrt ` T ) <-> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
| 30 |
12 4 29
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( 0 <_ ( sqrt ` T ) <-> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
| 31 |
28 30
|
mpbid |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) |
| 32 |
23 24 20 26 31
|
ltletrd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 < ( ( sqrt ` S ) + ( sqrt ` T ) ) ) |
| 33 |
32
|
gt0ne0d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) =/= 0 ) |
| 34 |
33
|
adantr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) =/= 0 ) |
| 35 |
10 18 22 34
|
divdird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( ( ( sqrt ` T ) x. ( A ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) + ( ( ( sqrt ` S ) x. ( F ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) ) |
| 36 |
|
fveq2 |
|- ( k = i -> ( B ` k ) = ( B ` i ) ) |
| 37 |
36
|
oveq2d |
|- ( k = i -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) |
| 38 |
|
fveq2 |
|- ( k = i -> ( A ` k ) = ( A ` i ) ) |
| 39 |
38
|
oveq2d |
|- ( k = i -> ( ( sqrt ` T ) x. ( A ` k ) ) = ( ( sqrt ` T ) x. ( A ` i ) ) ) |
| 40 |
37 39
|
oveq12d |
|- ( k = i -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
| 41 |
40
|
oveq1d |
|- ( k = i -> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
| 42 |
|
ovex |
|- ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) e. _V |
| 43 |
41 3 42
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
| 44 |
43
|
adantl |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
| 45 |
44
|
oveq2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( F ` i ) ) = ( ( sqrt ` S ) x. ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) |
| 46 |
|
simpl2 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 47 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
| 48 |
46 47
|
sylan |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
| 49 |
21 48
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. RR ) |
| 50 |
49 9
|
resubcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. RR ) |
| 51 |
50
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. CC ) |
| 52 |
13
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. CC ) |
| 53 |
25
|
gt0ne0d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) =/= 0 ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) =/= 0 ) |
| 55 |
51 52 54
|
divcan2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
| 56 |
45 55
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( F ` i ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
| 57 |
56
|
oveq2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) = ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) ) |
| 58 |
49
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. CC ) |
| 59 |
10 58
|
pncan3d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) |
| 60 |
57 59
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) |
| 61 |
9 17
|
readdcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) e. RR ) |
| 62 |
61
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) e. CC ) |
| 63 |
48
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
| 64 |
62 63 22 34
|
divmul2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( B ` i ) <-> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) ) |
| 65 |
60 64
|
mpbird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( B ` i ) ) |
| 66 |
4
|
recnd |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( sqrt ` T ) e. CC ) |
| 67 |
66
|
ad2antlr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. CC ) |
| 68 |
8
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 69 |
67 68 22 34
|
div23d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( ( sqrt ` T ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( A ` i ) ) ) |
| 70 |
22 52 22 34
|
divsubdird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) ) |
| 71 |
12
|
recnd |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) e. CC ) |
| 72 |
|
pncan2 |
|- ( ( ( sqrt ` S ) e. CC /\ ( sqrt ` T ) e. CC ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) |
| 73 |
71 66 72
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) |
| 74 |
73
|
adantr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) |
| 75 |
74
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( sqrt ` T ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
| 76 |
22 34
|
dividd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = 1 ) |
| 77 |
76
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) = ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) ) |
| 78 |
70 75 77
|
3eqtr3d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) ) |
| 79 |
78
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( A ` i ) ) = ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) ) |
| 80 |
69 79
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) ) |
| 81 |
16
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. CC ) |
| 82 |
52 81 22 34
|
div23d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( F ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( F ` i ) ) ) |
| 83 |
80 82
|
oveq12d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( A ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) + ( ( ( sqrt ` S ) x. ( F ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) = ( ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) + ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( F ` i ) ) ) ) |
| 84 |
35 65 83
|
3eqtr3d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) = ( ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) + ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( F ` i ) ) ) ) |
| 85 |
84
|
ralrimiva |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) + ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( F ` i ) ) ) ) |