| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axsegconlem2.1 |
|- S = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) |
| 2 |
|
axsegconlem7.2 |
|- T = sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) |
| 3 |
|
axsegconlem8.3 |
|- F = ( k e. ( 1 ... N ) |-> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) ) |
| 4 |
|
fveq2 |
|- ( k = i -> ( B ` k ) = ( B ` i ) ) |
| 5 |
4
|
oveq2d |
|- ( k = i -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) |
| 6 |
|
fveq2 |
|- ( k = i -> ( A ` k ) = ( A ` i ) ) |
| 7 |
6
|
oveq2d |
|- ( k = i -> ( ( sqrt ` T ) x. ( A ` k ) ) = ( ( sqrt ` T ) x. ( A ` i ) ) ) |
| 8 |
5 7
|
oveq12d |
|- ( k = i -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
| 9 |
8
|
oveq1d |
|- ( k = i -> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
| 10 |
|
ovex |
|- ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) e. _V |
| 11 |
9 3 10
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
| 12 |
11
|
adantl |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
| 13 |
12
|
oveq2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( F ` i ) ) = ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) |
| 14 |
1
|
axsegconlem4 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sqrt ` S ) e. RR ) |
| 15 |
14
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) e. RR ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. RR ) |
| 17 |
|
simpl2 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 18 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
| 19 |
17 18
|
sylan |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
| 20 |
16 19
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( B ` i ) ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( B ` i ) ) e. CC ) |
| 22 |
2
|
axsegconlem4 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( sqrt ` T ) e. RR ) |
| 23 |
|
readdcl |
|- ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
| 24 |
15 22 23
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
| 25 |
24
|
adantr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
| 26 |
25 19
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. RR ) |
| 27 |
22
|
ad2antlr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. RR ) |
| 28 |
|
simpl1 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 29 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
| 30 |
28 29
|
sylan |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
| 31 |
27 30
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. RR ) |
| 32 |
26 31
|
resubcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. RR ) |
| 33 |
32
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. CC ) |
| 34 |
16
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. CC ) |
| 35 |
1
|
axsegconlem6 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 < ( sqrt ` S ) ) |
| 36 |
35
|
gt0ne0d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) =/= 0 ) |
| 37 |
36
|
ad2antrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) =/= 0 ) |
| 38 |
21 33 34 37
|
divsubdird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) / ( sqrt ` S ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) |
| 39 |
26
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. CC ) |
| 40 |
31
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. CC ) |
| 41 |
21 39 40
|
subsubd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
| 42 |
27
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. CC ) |
| 43 |
19
|
renegcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( B ` i ) e. RR ) |
| 44 |
43
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( B ` i ) e. CC ) |
| 45 |
30
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 46 |
42 44 45
|
adddid |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( -u ( B ` i ) + ( A ` i ) ) ) = ( ( ( sqrt ` T ) x. -u ( B ` i ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
| 47 |
44 45
|
addcomd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( B ` i ) + ( A ` i ) ) = ( ( A ` i ) + -u ( B ` i ) ) ) |
| 48 |
19
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
| 49 |
45 48
|
negsubd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) + -u ( B ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) |
| 50 |
47 49
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( B ` i ) + ( A ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) |
| 51 |
50
|
oveq2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( -u ( B ` i ) + ( A ` i ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) |
| 52 |
25
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. CC ) |
| 53 |
52 34
|
negsubdi2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
| 54 |
34 42
|
pncan2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) |
| 55 |
54
|
negeqd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = -u ( sqrt ` T ) ) |
| 56 |
53 55
|
eqtr3d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = -u ( sqrt ` T ) ) |
| 57 |
56
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( B ` i ) ) = ( -u ( sqrt ` T ) x. ( B ` i ) ) ) |
| 58 |
34 52 48
|
subdird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( B ` i ) ) = ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) ) |
| 59 |
|
mulneg12 |
|- ( ( ( sqrt ` T ) e. CC /\ ( B ` i ) e. CC ) -> ( -u ( sqrt ` T ) x. ( B ` i ) ) = ( ( sqrt ` T ) x. -u ( B ` i ) ) ) |
| 60 |
42 48 59
|
syl2anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( sqrt ` T ) x. ( B ` i ) ) = ( ( sqrt ` T ) x. -u ( B ` i ) ) ) |
| 61 |
57 58 60
|
3eqtr3rd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. -u ( B ` i ) ) = ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) ) |
| 62 |
61
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. -u ( B ` i ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
| 63 |
46 51 62
|
3eqtr3rd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) |
| 64 |
41 63
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) |
| 65 |
64
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) / ( sqrt ` S ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) |
| 66 |
48 34 37
|
divcan3d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) = ( B ` i ) ) |
| 67 |
66
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) = ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) |
| 68 |
38 65 67
|
3eqtr3rd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) |
| 69 |
13 68
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( F ` i ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) |
| 70 |
69
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ^ 2 ) ) |
| 71 |
30 19
|
resubcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) |
| 72 |
27 71
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) e. RR ) |
| 73 |
72
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) e. CC ) |
| 74 |
73 34 37
|
sqdivd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ^ 2 ) = ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) / ( ( sqrt ` S ) ^ 2 ) ) ) |
| 75 |
71
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. CC ) |
| 76 |
42 75
|
sqmuld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) = ( ( ( sqrt ` T ) ^ 2 ) x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) |
| 77 |
2
|
axsegconlem2 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> T e. RR ) |
| 78 |
77
|
ad2antlr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> T e. RR ) |
| 79 |
2
|
axsegconlem3 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> 0 <_ T ) |
| 80 |
79
|
ad2antlr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> 0 <_ T ) |
| 81 |
|
resqrtth |
|- ( ( T e. RR /\ 0 <_ T ) -> ( ( sqrt ` T ) ^ 2 ) = T ) |
| 82 |
78 80 81
|
syl2anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) ^ 2 ) = T ) |
| 83 |
82
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) ^ 2 ) x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) |
| 84 |
76 83
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) = ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) |
| 85 |
1
|
axsegconlem2 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> S e. RR ) |
| 86 |
1
|
axsegconlem3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> 0 <_ S ) |
| 87 |
|
resqrtth |
|- ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) ^ 2 ) = S ) |
| 88 |
85 86 87
|
syl2anc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( sqrt ` S ) ^ 2 ) = S ) |
| 89 |
88
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( ( sqrt ` S ) ^ 2 ) = S ) |
| 90 |
89
|
ad2antrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) ^ 2 ) = S ) |
| 91 |
84 90
|
oveq12d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) / ( ( sqrt ` S ) ^ 2 ) ) = ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
| 92 |
70 74 91
|
3eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
| 93 |
92
|
sumeq2dv |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
| 94 |
|
fzfid |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( 1 ... N ) e. Fin ) |
| 95 |
77
|
adantl |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> T e. RR ) |
| 96 |
95
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> T e. CC ) |
| 97 |
71
|
resqcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
| 98 |
97
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. CC ) |
| 99 |
94 96 98
|
fsummulc2 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) |
| 100 |
99
|
oveq1d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = ( sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
| 101 |
|
fveq2 |
|- ( p = i -> ( C ` p ) = ( C ` i ) ) |
| 102 |
|
fveq2 |
|- ( p = i -> ( D ` p ) = ( D ` i ) ) |
| 103 |
101 102
|
oveq12d |
|- ( p = i -> ( ( C ` p ) - ( D ` p ) ) = ( ( C ` i ) - ( D ` i ) ) ) |
| 104 |
103
|
oveq1d |
|- ( p = i -> ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) = ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
| 105 |
104
|
cbvsumv |
|- sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) |
| 106 |
2 105
|
eqtri |
|- T = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) |
| 107 |
|
fveq2 |
|- ( i = p -> ( A ` i ) = ( A ` p ) ) |
| 108 |
|
fveq2 |
|- ( i = p -> ( B ` i ) = ( B ` p ) ) |
| 109 |
107 108
|
oveq12d |
|- ( i = p -> ( ( A ` i ) - ( B ` i ) ) = ( ( A ` p ) - ( B ` p ) ) ) |
| 110 |
109
|
oveq1d |
|- ( i = p -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) ) |
| 111 |
110
|
cbvsumv |
|- sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) |
| 112 |
111 1
|
eqtr4i |
|- sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = S |
| 113 |
106 112
|
oveq12i |
|- ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) x. S ) |
| 114 |
|
eqid |
|- sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) |
| 115 |
114
|
axsegconlem2 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
| 116 |
115
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
| 117 |
116
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
| 118 |
95 117
|
remulcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. RR ) |
| 119 |
118
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. CC ) |
| 120 |
|
eqid |
|- sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) |
| 121 |
120
|
axsegconlem2 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. RR ) |
| 122 |
121
|
adantl |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. RR ) |
| 123 |
122
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. CC ) |
| 124 |
85
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> S e. RR ) |
| 125 |
124
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S e. RR ) |
| 126 |
125
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S e. CC ) |
| 127 |
86
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 <_ S ) |
| 128 |
|
sqrt00 |
|- ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) = 0 <-> S = 0 ) ) |
| 129 |
128
|
necon3bid |
|- ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) =/= 0 <-> S =/= 0 ) ) |
| 130 |
124 127 129
|
syl2anc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( ( sqrt ` S ) =/= 0 <-> S =/= 0 ) ) |
| 131 |
36 130
|
mpbid |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> S =/= 0 ) |
| 132 |
131
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S =/= 0 ) |
| 133 |
119 123 126 132
|
divmul3d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) <-> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) x. S ) ) ) |
| 134 |
113 133
|
mpbiri |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
| 135 |
78 97
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. RR ) |
| 136 |
135
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. CC ) |
| 137 |
94 126 136 132
|
fsumdivc |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
| 138 |
100 134 137
|
3eqtr3rd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
| 139 |
93 138
|
eqtrd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |