Step |
Hyp |
Ref |
Expression |
1 |
|
axrep6 |
|- ( A. w E* x ( w = x /\ ph ) -> E. y A. x ( x e. y <-> E. w e. z ( w = x /\ ph ) ) ) |
2 |
|
euequ |
|- E! x x = w |
3 |
2
|
eumoi |
|- E* x x = w |
4 |
|
equcomi |
|- ( w = x -> x = w ) |
5 |
4
|
adantr |
|- ( ( w = x /\ ph ) -> x = w ) |
6 |
5
|
moimi |
|- ( E* x x = w -> E* x ( w = x /\ ph ) ) |
7 |
3 6
|
ax-mp |
|- E* x ( w = x /\ ph ) |
8 |
1 7
|
mpg |
|- E. y A. x ( x e. y <-> E. w e. z ( w = x /\ ph ) ) |
9 |
|
df-rex |
|- ( E. w e. z ( w = x /\ ph ) <-> E. w ( w e. z /\ ( w = x /\ ph ) ) ) |
10 |
|
an12 |
|- ( ( w = x /\ ( w e. z /\ ph ) ) <-> ( w e. z /\ ( w = x /\ ph ) ) ) |
11 |
10
|
exbii |
|- ( E. w ( w = x /\ ( w e. z /\ ph ) ) <-> E. w ( w e. z /\ ( w = x /\ ph ) ) ) |
12 |
|
elequ1 |
|- ( w = x -> ( w e. z <-> x e. z ) ) |
13 |
12
|
anbi1d |
|- ( w = x -> ( ( w e. z /\ ph ) <-> ( x e. z /\ ph ) ) ) |
14 |
13
|
equsexvw |
|- ( E. w ( w = x /\ ( w e. z /\ ph ) ) <-> ( x e. z /\ ph ) ) |
15 |
9 11 14
|
3bitr2i |
|- ( E. w e. z ( w = x /\ ph ) <-> ( x e. z /\ ph ) ) |
16 |
15
|
bibi2i |
|- ( ( x e. y <-> E. w e. z ( w = x /\ ph ) ) <-> ( x e. y <-> ( x e. z /\ ph ) ) ) |
17 |
16
|
albii |
|- ( A. x ( x e. y <-> E. w e. z ( w = x /\ ph ) ) <-> A. x ( x e. y <-> ( x e. z /\ ph ) ) ) |
18 |
17
|
exbii |
|- ( E. y A. x ( x e. y <-> E. w e. z ( w = x /\ ph ) ) <-> E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) ) |
19 |
8 18
|
mpbi |
|- E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) |