Description: A variant of the Axiom of Union ax-un . For any set x , there exists a set y whose members are exactly the members of the members of x i.e. the union of x . Axiom Union of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axun2 | |- E. y A. z ( z e. y <-> E. w ( z e. w /\ w e. x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-un | |- E. y A. z ( E. w ( z e. w /\ w e. x ) -> z e. y ) |
|
| 2 | 1 | sepexi | |- E. y A. z ( z e. y <-> E. w ( z e. w /\ w e. x ) ) |