Step |
Hyp |
Ref |
Expression |
1 |
|
bafval.1 |
|- X = ( BaseSet ` U ) |
2 |
|
bafval.2 |
|- G = ( +v ` U ) |
3 |
|
fveq2 |
|- ( u = U -> ( +v ` u ) = ( +v ` U ) ) |
4 |
3
|
rneqd |
|- ( u = U -> ran ( +v ` u ) = ran ( +v ` U ) ) |
5 |
|
df-ba |
|- BaseSet = ( u e. _V |-> ran ( +v ` u ) ) |
6 |
|
fvex |
|- ( +v ` U ) e. _V |
7 |
6
|
rnex |
|- ran ( +v ` U ) e. _V |
8 |
4 5 7
|
fvmpt |
|- ( U e. _V -> ( BaseSet ` U ) = ran ( +v ` U ) ) |
9 |
|
rn0 |
|- ran (/) = (/) |
10 |
9
|
eqcomi |
|- (/) = ran (/) |
11 |
|
fvprc |
|- ( -. U e. _V -> ( BaseSet ` U ) = (/) ) |
12 |
|
fvprc |
|- ( -. U e. _V -> ( +v ` U ) = (/) ) |
13 |
12
|
rneqd |
|- ( -. U e. _V -> ran ( +v ` U ) = ran (/) ) |
14 |
10 11 13
|
3eqtr4a |
|- ( -. U e. _V -> ( BaseSet ` U ) = ran ( +v ` U ) ) |
15 |
8 14
|
pm2.61i |
|- ( BaseSet ` U ) = ran ( +v ` U ) |
16 |
2
|
rneqi |
|- ran G = ran ( +v ` U ) |
17 |
15 1 16
|
3eqtr4i |
|- X = ran G |