| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							 |-  M e. NN  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							 |-  N e. NN  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							 |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							 |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							 |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotth.e | 
							 |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } | 
						
						
							| 7 | 
							
								
							 | 
							ballotth.mgtn | 
							 |-  N < M  | 
						
						
							| 8 | 
							
								
							 | 
							ballotth.i | 
							 |-  I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) | 
						
						
							| 9 | 
							
								
							 | 
							eldifi | 
							 |-  ( C e. ( O \ E ) -> C e. O )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrr | 
							 |-  ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> C e. O )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemiex | 
							 |-  ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simpld | 
							 |-  ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elfznn | 
							 |-  ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( I ` C ) e. NN )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							 |-  ( C e. ( O \ E ) -> ( I ` C ) e. NN )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( I ` C ) e. NN )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemii | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( I ` C ) =/= 1 )  | 
						
						
							| 17 | 
							
								
							 | 
							eluz2b3 | 
							 |-  ( ( I ` C ) e. ( ZZ>= ` 2 ) <-> ( ( I ` C ) e. NN /\ ( I ` C ) =/= 1 ) )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							sylanbrc | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( I ` C ) e. ( ZZ>= ` 2 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							uz2m1nn | 
							 |-  ( ( I ` C ) e. ( ZZ>= ` 2 ) -> ( ( I ` C ) - 1 ) e. NN )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( I ` C ) - 1 ) e. NN )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> ( ( I ` C ) - 1 ) e. NN )  | 
						
						
							| 22 | 
							
								
							 | 
							elnnuz | 
							 |-  ( ( ( I ` C ) - 1 ) e. NN <-> ( ( I ` C ) - 1 ) e. ( ZZ>= ` 1 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							biimpi | 
							 |-  ( ( ( I ` C ) - 1 ) e. NN -> ( ( I ` C ) - 1 ) e. ( ZZ>= ` 1 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eluzfz1 | 
							 |-  ( ( ( I ` C ) - 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( ( I ` C ) - 1 ) ) )  | 
						
						
							| 25 | 
							
								20 23 24
							 | 
							3syl | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> 1 e. ( 1 ... ( ( I ` C ) - 1 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							 |-  ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> 1 e. ( 1 ... ( ( I ` C ) - 1 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							0le1 | 
							 |-  0 <_ 1  | 
						
						
							| 28 | 
							
								
							 | 
							1e0p1 | 
							 |-  1 = ( 0 + 1 )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							breqtri | 
							 |-  0 <_ ( 0 + 1 )  | 
						
						
							| 30 | 
							
								
							 | 
							1nn | 
							 |-  1 e. NN  | 
						
						
							| 31 | 
							
								30
							 | 
							a1i | 
							 |-  ( C e. ( O \ E ) -> 1 e. NN )  | 
						
						
							| 32 | 
							
								1 2 3 4 5 9 31
							 | 
							ballotlemfp1 | 
							 |-  ( C e. ( O \ E ) -> ( ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) /\ ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							simprd | 
							 |-  ( C e. ( O \ E ) -> ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							imp | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							1m1e0 | 
							 |-  ( 1 - 1 ) = 0  | 
						
						
							| 36 | 
							
								35
							 | 
							fveq2i | 
							 |-  ( ( F ` C ) ` ( 1 - 1 ) ) = ( ( F ` C ) ` 0 )  | 
						
						
							| 37 | 
							
								36
							 | 
							oveq1i | 
							 |-  ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) = ( ( ( F ` C ) ` 0 ) + 1 )  | 
						
						
							| 38 | 
							
								37
							 | 
							a1i | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) = ( ( ( F ` C ) ` 0 ) + 1 ) )  | 
						
						
							| 39 | 
							
								1 2 3 4 5
							 | 
							ballotlemfval0 | 
							 |-  ( C e. O -> ( ( F ` C ) ` 0 ) = 0 )  | 
						
						
							| 40 | 
							
								9 39
							 | 
							syl | 
							 |-  ( C e. ( O \ E ) -> ( ( F ` C ) ` 0 ) = 0 )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( F ` C ) ` 0 ) = 0 )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq1d | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( ( F ` C ) ` 0 ) + 1 ) = ( 0 + 1 ) )  | 
						
						
							| 43 | 
							
								34 38 42
							 | 
							3eqtrrd | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( 0 + 1 ) = ( ( F ` C ) ` 1 ) )  | 
						
						
							| 44 | 
							
								29 43
							 | 
							breqtrid | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> 0 <_ ( ( F ` C ) ` 1 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantr | 
							 |-  ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> 0 <_ ( ( F ` C ) ` 1 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = 1 -> ( ( F ` C ) ` i ) = ( ( F ` C ) ` 1 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							breq2d | 
							 |-  ( i = 1 -> ( 0 <_ ( ( F ` C ) ` i ) <-> 0 <_ ( ( F ` C ) ` 1 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							rspcev | 
							 |-  ( ( 1 e. ( 1 ... ( ( I ` C ) - 1 ) ) /\ 0 <_ ( ( F ` C ) ` 1 ) ) -> E. i e. ( 1 ... ( ( I ` C ) - 1 ) ) 0 <_ ( ( F ` C ) ` i ) )  | 
						
						
							| 49 | 
							
								26 45 48
							 | 
							syl2anc | 
							 |-  ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> E. i e. ( 1 ... ( ( I ` C ) - 1 ) ) 0 <_ ( ( F ` C ) ` i ) )  | 
						
						
							| 50 | 
							
								
							 | 
							df-neg | 
							 |-  -u 1 = ( 0 - 1 )  | 
						
						
							| 51 | 
							
								1 2 3 4 5 9 14
							 | 
							ballotlemfp1 | 
							 |-  ( C e. ( O \ E ) -> ( ( -. ( I ` C ) e. C -> ( ( F ` C ) ` ( I ` C ) ) = ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) - 1 ) ) /\ ( ( I ` C ) e. C -> ( ( F ` C ) ` ( I ` C ) ) = ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							simprd | 
							 |-  ( C e. ( O \ E ) -> ( ( I ` C ) e. C -> ( ( F ` C ) ` ( I ` C ) ) = ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							imp | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( I ` C ) ) = ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) )  | 
						
						
							| 54 | 
							
								11
							 | 
							simprd | 
							 |-  ( C e. ( O \ E ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 )  | 
						
						
							| 55 | 
							
								54
							 | 
							adantr | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 )  | 
						
						
							| 56 | 
							
								53 55
							 | 
							eqtr3d | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) = 0 )  | 
						
						
							| 57 | 
							
								
							 | 
							0cnd | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> 0 e. CC )  | 
						
						
							| 58 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> 1 e. CC )  | 
						
						
							| 59 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> C e. O )  | 
						
						
							| 60 | 
							
								14
							 | 
							nnzd | 
							 |-  ( C e. ( O \ E ) -> ( I ` C ) e. ZZ )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( I ` C ) e. ZZ )  | 
						
						
							| 62 | 
							
								
							 | 
							1zzd | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> 1 e. ZZ )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							zsubcld | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( I ` C ) - 1 ) e. ZZ )  | 
						
						
							| 64 | 
							
								1 2 3 4 5 59 63
							 | 
							ballotlemfelz | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) e. ZZ )  | 
						
						
							| 65 | 
							
								64
							 | 
							zcnd | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) e. CC )  | 
						
						
							| 66 | 
							
								57 58 65
							 | 
							subadd2d | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( 0 - 1 ) = ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) <-> ( ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) + 1 ) = 0 ) )  | 
						
						
							| 67 | 
							
								56 66
							 | 
							mpbird | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( 0 - 1 ) = ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) )  | 
						
						
							| 68 | 
							
								50 67
							 | 
							eqtrid | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> -u 1 = ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							neg1lt0 | 
							 |-  -u 1 < 0  | 
						
						
							| 70 | 
							
								68 69
							 | 
							eqbrtrrdi | 
							 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) < 0 )  | 
						
						
							| 71 | 
							
								70
							 | 
							adantlr | 
							 |-  ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> ( ( F ` C ) ` ( ( I ` C ) - 1 ) ) < 0 )  | 
						
						
							| 72 | 
							
								1 2 3 4 5 10 21 49 71
							 | 
							ballotlemfcc | 
							 |-  ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> E. k e. ( 1 ... ( ( I ` C ) - 1 ) ) ( ( F ` C ) ` k ) = 0 )  | 
						
						
							| 73 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemimin | 
							 |-  ( C e. ( O \ E ) -> -. E. k e. ( 1 ... ( ( I ` C ) - 1 ) ) ( ( F ` C ) ` k ) = 0 )  | 
						
						
							| 74 | 
							
								73
							 | 
							ad2antrr | 
							 |-  ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) e. C ) -> -. E. k e. ( 1 ... ( ( I ` C ) - 1 ) ) ( ( F ` C ) ` k ) = 0 )  | 
						
						
							| 75 | 
							
								72 74
							 | 
							pm2.65da | 
							 |-  ( ( C e. ( O \ E ) /\ 1 e. C ) -> -. ( I ` C ) e. C )  |