| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							 |-  M e. NN  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							 |-  N e. NN  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							 |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							 |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							 |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotth.e | 
							 |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } | 
						
						
							| 7 | 
							
								
							 | 
							nnaddcl | 
							 |-  ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN )  | 
						
						
							| 8 | 
							
								1 2 7
							 | 
							mp2an | 
							 |-  ( M + N ) e. NN  | 
						
						
							| 9 | 
							
								
							 | 
							elnnuz | 
							 |-  ( ( M + N ) e. NN <-> ( M + N ) e. ( ZZ>= ` 1 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpbi | 
							 |-  ( M + N ) e. ( ZZ>= ` 1 )  | 
						
						
							| 11 | 
							
								
							 | 
							eluzfz1 | 
							 |-  ( ( M + N ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( M + N ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							ax-mp | 
							 |-  1 e. ( 1 ... ( M + N ) )  | 
						
						
							| 13 | 
							
								
							 | 
							0le1 | 
							 |-  0 <_ 1  | 
						
						
							| 14 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 15 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 16 | 
							
								14 15
							 | 
							lenlti | 
							 |-  ( 0 <_ 1 <-> -. 1 < 0 )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							mpbi | 
							 |-  -. 1 < 0  | 
						
						
							| 18 | 
							
								
							 | 
							ltsub13 | 
							 |-  ( ( 0 e. RR /\ 0 e. RR /\ 1 e. RR ) -> ( 0 < ( 0 - 1 ) <-> 1 < ( 0 - 0 ) ) )  | 
						
						
							| 19 | 
							
								14 14 15 18
							 | 
							mp3an | 
							 |-  ( 0 < ( 0 - 1 ) <-> 1 < ( 0 - 0 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							0m0e0 | 
							 |-  ( 0 - 0 ) = 0  | 
						
						
							| 21 | 
							
								20
							 | 
							breq2i | 
							 |-  ( 1 < ( 0 - 0 ) <-> 1 < 0 )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							bitri | 
							 |-  ( 0 < ( 0 - 1 ) <-> 1 < 0 )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							mtbir | 
							 |-  -. 0 < ( 0 - 1 )  | 
						
						
							| 24 | 
							
								
							 | 
							1m1e0 | 
							 |-  ( 1 - 1 ) = 0  | 
						
						
							| 25 | 
							
								24
							 | 
							fveq2i | 
							 |-  ( ( F ` C ) ` ( 1 - 1 ) ) = ( ( F ` C ) ` 0 )  | 
						
						
							| 26 | 
							
								1 2 3 4 5
							 | 
							ballotlemfval0 | 
							 |-  ( C e. O -> ( ( F ` C ) ` 0 ) = 0 )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							eqtrid | 
							 |-  ( C e. O -> ( ( F ` C ) ` ( 1 - 1 ) ) = 0 )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq1d | 
							 |-  ( C e. O -> ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) = ( 0 - 1 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							breq2d | 
							 |-  ( C e. O -> ( 0 < ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) <-> 0 < ( 0 - 1 ) ) )  | 
						
						
							| 30 | 
							
								23 29
							 | 
							mtbiri | 
							 |-  ( C e. O -> -. 0 < ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( C e. O /\ -. 1 e. C ) -> -. 0 < ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simpl | 
							 |-  ( ( C e. O /\ 1 e. ( 1 ... ( M + N ) ) ) -> C e. O )  | 
						
						
							| 33 | 
							
								
							 | 
							1nn | 
							 |-  1 e. NN  | 
						
						
							| 34 | 
							
								33
							 | 
							a1i | 
							 |-  ( ( C e. O /\ 1 e. ( 1 ... ( M + N ) ) ) -> 1 e. NN )  | 
						
						
							| 35 | 
							
								1 2 3 4 5 32 34
							 | 
							ballotlemfp1 | 
							 |-  ( ( C e. O /\ 1 e. ( 1 ... ( M + N ) ) ) -> ( ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) /\ ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							simpld | 
							 |-  ( ( C e. O /\ 1 e. ( 1 ... ( M + N ) ) ) -> ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) )  | 
						
						
							| 37 | 
							
								12 36
							 | 
							mpan2 | 
							 |-  ( C e. O -> ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							imp | 
							 |-  ( ( C e. O /\ -. 1 e. C ) -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							breq2d | 
							 |-  ( ( C e. O /\ -. 1 e. C ) -> ( 0 < ( ( F ` C ) ` 1 ) <-> 0 < ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) )  | 
						
						
							| 40 | 
							
								31 39
							 | 
							mtbird | 
							 |-  ( ( C e. O /\ -. 1 e. C ) -> -. 0 < ( ( F ` C ) ` 1 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = 1 -> ( ( F ` C ) ` i ) = ( ( F ` C ) ` 1 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							breq2d | 
							 |-  ( i = 1 -> ( 0 < ( ( F ` C ) ` i ) <-> 0 < ( ( F ` C ) ` 1 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							notbid | 
							 |-  ( i = 1 -> ( -. 0 < ( ( F ` C ) ` i ) <-> -. 0 < ( ( F ` C ) ` 1 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							rspcev | 
							 |-  ( ( 1 e. ( 1 ... ( M + N ) ) /\ -. 0 < ( ( F ` C ) ` 1 ) ) -> E. i e. ( 1 ... ( M + N ) ) -. 0 < ( ( F ` C ) ` i ) )  | 
						
						
							| 45 | 
							
								12 40 44
							 | 
							sylancr | 
							 |-  ( ( C e. O /\ -. 1 e. C ) -> E. i e. ( 1 ... ( M + N ) ) -. 0 < ( ( F ` C ) ` i ) )  | 
						
						
							| 46 | 
							
								
							 | 
							rexnal | 
							 |-  ( E. i e. ( 1 ... ( M + N ) ) -. 0 < ( ( F ` C ) ` i ) <-> -. A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							sylib | 
							 |-  ( ( C e. O /\ -. 1 e. C ) -> -. A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) )  | 
						
						
							| 48 | 
							
								1 2 3 4 5 6
							 | 
							ballotleme | 
							 |-  ( C e. E <-> ( C e. O /\ A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							simprbi | 
							 |-  ( C e. E -> A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							nsyl | 
							 |-  ( ( C e. O /\ -. 1 e. C ) -> -. C e. E )  | 
						
						
							| 51 | 
							
								50
							 | 
							ex | 
							 |-  ( C e. O -> ( -. 1 e. C -> -. C e. E ) )  |