Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
ballotth.mgtn |
|- N < M |
8 |
|
eldifi |
|- ( C e. ( O \ E ) -> C e. O ) |
9 |
1
|
a1i |
|- ( C e. ( O \ E ) -> M e. NN ) |
10 |
2
|
a1i |
|- ( C e. ( O \ E ) -> N e. NN ) |
11 |
9 10
|
nnaddcld |
|- ( C e. ( O \ E ) -> ( M + N ) e. NN ) |
12 |
1 2 3 4 5 6
|
ballotlemodife |
|- ( C e. ( O \ E ) <-> ( C e. O /\ E. i e. ( 1 ... ( M + N ) ) ( ( F ` C ) ` i ) <_ 0 ) ) |
13 |
12
|
simprbi |
|- ( C e. ( O \ E ) -> E. i e. ( 1 ... ( M + N ) ) ( ( F ` C ) ` i ) <_ 0 ) |
14 |
2
|
nnrei |
|- N e. RR |
15 |
1
|
nnrei |
|- M e. RR |
16 |
14 15
|
posdifi |
|- ( N < M <-> 0 < ( M - N ) ) |
17 |
7 16
|
mpbi |
|- 0 < ( M - N ) |
18 |
1 2 3 4 5
|
ballotlemfmpn |
|- ( C e. O -> ( ( F ` C ) ` ( M + N ) ) = ( M - N ) ) |
19 |
8 18
|
syl |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` ( M + N ) ) = ( M - N ) ) |
20 |
17 19
|
breqtrrid |
|- ( C e. ( O \ E ) -> 0 < ( ( F ` C ) ` ( M + N ) ) ) |
21 |
1 2 3 4 5 8 11 13 20
|
ballotlemfc0 |
|- ( C e. ( O \ E ) -> E. k e. ( 1 ... ( M + N ) ) ( ( F ` C ) ` k ) = 0 ) |