Metamath Proof Explorer


Theorem ballotlem8

Description: There are as many countings with ties starting with a ballot for A as there are starting with a ballot for B . (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m
|- M e. NN
ballotth.n
|- N e. NN
ballotth.o
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
ballotth.p
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )
ballotth.f
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )
ballotth.e
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) }
ballotth.mgtn
|- N < M
ballotth.i
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) )
ballotth.s
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) )
ballotth.r
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) )
Assertion ballotlem8
|- ( # ` { c e. ( O \ E ) | 1 e. c } ) = ( # ` { c e. ( O \ E ) | -. 1 e. c } )

Proof

Step Hyp Ref Expression
1 ballotth.m
 |-  M e. NN
2 ballotth.n
 |-  N e. NN
3 ballotth.o
 |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
4 ballotth.p
 |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )
5 ballotth.f
 |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )
6 ballotth.e
 |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) }
7 ballotth.mgtn
 |-  N < M
8 ballotth.i
 |-  I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) )
9 ballotth.s
 |-  S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) )
10 ballotth.r
 |-  R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) )
11 1 2 3 4 5 6 7 8 9 10 ballotlem7
 |-  ( R |` { c e. ( O \ E ) | 1 e. c } ) : { c e. ( O \ E ) | 1 e. c } -1-1-onto-> { c e. ( O \ E ) | -. 1 e. c }
12 1 2 3 ballotlemoex
 |-  O e. _V
13 difexg
 |-  ( O e. _V -> ( O \ E ) e. _V )
14 12 13 ax-mp
 |-  ( O \ E ) e. _V
15 14 rabex
 |-  { c e. ( O \ E ) | 1 e. c } e. _V
16 15 f1oen
 |-  ( ( R |` { c e. ( O \ E ) | 1 e. c } ) : { c e. ( O \ E ) | 1 e. c } -1-1-onto-> { c e. ( O \ E ) | -. 1 e. c } -> { c e. ( O \ E ) | 1 e. c } ~~ { c e. ( O \ E ) | -. 1 e. c } )
17 hasheni
 |-  ( { c e. ( O \ E ) | 1 e. c } ~~ { c e. ( O \ E ) | -. 1 e. c } -> ( # ` { c e. ( O \ E ) | 1 e. c } ) = ( # ` { c e. ( O \ E ) | -. 1 e. c } ) )
18 11 16 17 mp2b
 |-  ( # ` { c e. ( O \ E ) | 1 e. c } ) = ( # ` { c e. ( O \ E ) | -. 1 e. c } )