Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
fveq2 |
|- ( d = C -> ( F ` d ) = ( F ` C ) ) |
8 |
7
|
fveq1d |
|- ( d = C -> ( ( F ` d ) ` i ) = ( ( F ` C ) ` i ) ) |
9 |
8
|
breq2d |
|- ( d = C -> ( 0 < ( ( F ` d ) ` i ) <-> 0 < ( ( F ` C ) ` i ) ) ) |
10 |
9
|
ralbidv |
|- ( d = C -> ( A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` d ) ` i ) <-> A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) ) |
11 |
|
fveq2 |
|- ( c = d -> ( F ` c ) = ( F ` d ) ) |
12 |
11
|
fveq1d |
|- ( c = d -> ( ( F ` c ) ` i ) = ( ( F ` d ) ` i ) ) |
13 |
12
|
breq2d |
|- ( c = d -> ( 0 < ( ( F ` c ) ` i ) <-> 0 < ( ( F ` d ) ` i ) ) ) |
14 |
13
|
ralbidv |
|- ( c = d -> ( A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) <-> A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` d ) ` i ) ) ) |
15 |
14
|
cbvrabv |
|- { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } = { d e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` d ) ` i ) } |
16 |
6 15
|
eqtri |
|- E = { d e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` d ) ` i ) } |
17 |
10 16
|
elrab2 |
|- ( C e. E <-> ( C e. O /\ A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) ) |