Metamath Proof Explorer


Theorem ballotleme

Description: Elements of E . (Contributed by Thierry Arnoux, 14-Dec-2016)

Ref Expression
Hypotheses ballotth.m
|- M e. NN
ballotth.n
|- N e. NN
ballotth.o
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
ballotth.p
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )
ballotth.f
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )
ballotth.e
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) }
Assertion ballotleme
|- ( C e. E <-> ( C e. O /\ A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) )

Proof

Step Hyp Ref Expression
1 ballotth.m
 |-  M e. NN
2 ballotth.n
 |-  N e. NN
3 ballotth.o
 |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
4 ballotth.p
 |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )
5 ballotth.f
 |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )
6 ballotth.e
 |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) }
7 fveq2
 |-  ( d = C -> ( F ` d ) = ( F ` C ) )
8 7 fveq1d
 |-  ( d = C -> ( ( F ` d ) ` i ) = ( ( F ` C ) ` i ) )
9 8 breq2d
 |-  ( d = C -> ( 0 < ( ( F ` d ) ` i ) <-> 0 < ( ( F ` C ) ` i ) ) )
10 9 ralbidv
 |-  ( d = C -> ( A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` d ) ` i ) <-> A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) )
11 fveq2
 |-  ( c = d -> ( F ` c ) = ( F ` d ) )
12 11 fveq1d
 |-  ( c = d -> ( ( F ` c ) ` i ) = ( ( F ` d ) ` i ) )
13 12 breq2d
 |-  ( c = d -> ( 0 < ( ( F ` c ) ` i ) <-> 0 < ( ( F ` d ) ` i ) ) )
14 13 ralbidv
 |-  ( c = d -> ( A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) <-> A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` d ) ` i ) ) )
15 14 cbvrabv
 |-  { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } = { d e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` d ) ` i ) }
16 6 15 eqtri
 |-  E = { d e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` d ) ` i ) }
17 10 16 elrab2
 |-  ( C e. E <-> ( C e. O /\ A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) )