| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							 |-  M e. NN  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							 |-  N e. NN  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							 |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							 |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							 |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotlemfval.c | 
							 |-  ( ph -> C e. O )  | 
						
						
							| 7 | 
							
								
							 | 
							ballotlemfval.j | 
							 |-  ( ph -> J e. ZZ )  | 
						
						
							| 8 | 
							
								1 2 3 4 5 6 7
							 | 
							ballotlemfval | 
							 |-  ( ph -> ( ( F ` C ) ` J ) = ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fzfi | 
							 |-  ( 1 ... J ) e. Fin  | 
						
						
							| 10 | 
							
								
							 | 
							inss1 | 
							 |-  ( ( 1 ... J ) i^i C ) C_ ( 1 ... J )  | 
						
						
							| 11 | 
							
								
							 | 
							ssfi | 
							 |-  ( ( ( 1 ... J ) e. Fin /\ ( ( 1 ... J ) i^i C ) C_ ( 1 ... J ) ) -> ( ( 1 ... J ) i^i C ) e. Fin )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							mp2an | 
							 |-  ( ( 1 ... J ) i^i C ) e. Fin  | 
						
						
							| 13 | 
							
								
							 | 
							hashcl | 
							 |-  ( ( ( 1 ... J ) i^i C ) e. Fin -> ( # ` ( ( 1 ... J ) i^i C ) ) e. NN0 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							ax-mp | 
							 |-  ( # ` ( ( 1 ... J ) i^i C ) ) e. NN0  | 
						
						
							| 15 | 
							
								14
							 | 
							nn0zi | 
							 |-  ( # ` ( ( 1 ... J ) i^i C ) ) e. ZZ  | 
						
						
							| 16 | 
							
								
							 | 
							difss | 
							 |-  ( ( 1 ... J ) \ C ) C_ ( 1 ... J )  | 
						
						
							| 17 | 
							
								
							 | 
							ssfi | 
							 |-  ( ( ( 1 ... J ) e. Fin /\ ( ( 1 ... J ) \ C ) C_ ( 1 ... J ) ) -> ( ( 1 ... J ) \ C ) e. Fin )  | 
						
						
							| 18 | 
							
								9 16 17
							 | 
							mp2an | 
							 |-  ( ( 1 ... J ) \ C ) e. Fin  | 
						
						
							| 19 | 
							
								
							 | 
							hashcl | 
							 |-  ( ( ( 1 ... J ) \ C ) e. Fin -> ( # ` ( ( 1 ... J ) \ C ) ) e. NN0 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							ax-mp | 
							 |-  ( # ` ( ( 1 ... J ) \ C ) ) e. NN0  | 
						
						
							| 21 | 
							
								20
							 | 
							nn0zi | 
							 |-  ( # ` ( ( 1 ... J ) \ C ) ) e. ZZ  | 
						
						
							| 22 | 
							
								
							 | 
							zsubcl | 
							 |-  ( ( ( # ` ( ( 1 ... J ) i^i C ) ) e. ZZ /\ ( # ` ( ( 1 ... J ) \ C ) ) e. ZZ ) -> ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) e. ZZ )  | 
						
						
							| 23 | 
							
								15 21 22
							 | 
							mp2an | 
							 |-  ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) e. ZZ  | 
						
						
							| 24 | 
							
								8 23
							 | 
							eqeltrdi | 
							 |-  ( ph -> ( ( F ` C ) ` J ) e. ZZ )  |