Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotlemfval.c |
|- ( ph -> C e. O ) |
7 |
|
ballotlemfval.j |
|- ( ph -> J e. ZZ ) |
8 |
1 2 3 4 5 6 7
|
ballotlemfval |
|- ( ph -> ( ( F ` C ) ` J ) = ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) ) |
9 |
|
fzfi |
|- ( 1 ... J ) e. Fin |
10 |
|
inss1 |
|- ( ( 1 ... J ) i^i C ) C_ ( 1 ... J ) |
11 |
|
ssfi |
|- ( ( ( 1 ... J ) e. Fin /\ ( ( 1 ... J ) i^i C ) C_ ( 1 ... J ) ) -> ( ( 1 ... J ) i^i C ) e. Fin ) |
12 |
9 10 11
|
mp2an |
|- ( ( 1 ... J ) i^i C ) e. Fin |
13 |
|
hashcl |
|- ( ( ( 1 ... J ) i^i C ) e. Fin -> ( # ` ( ( 1 ... J ) i^i C ) ) e. NN0 ) |
14 |
12 13
|
ax-mp |
|- ( # ` ( ( 1 ... J ) i^i C ) ) e. NN0 |
15 |
14
|
nn0zi |
|- ( # ` ( ( 1 ... J ) i^i C ) ) e. ZZ |
16 |
|
difss |
|- ( ( 1 ... J ) \ C ) C_ ( 1 ... J ) |
17 |
|
ssfi |
|- ( ( ( 1 ... J ) e. Fin /\ ( ( 1 ... J ) \ C ) C_ ( 1 ... J ) ) -> ( ( 1 ... J ) \ C ) e. Fin ) |
18 |
9 16 17
|
mp2an |
|- ( ( 1 ... J ) \ C ) e. Fin |
19 |
|
hashcl |
|- ( ( ( 1 ... J ) \ C ) e. Fin -> ( # ` ( ( 1 ... J ) \ C ) ) e. NN0 ) |
20 |
18 19
|
ax-mp |
|- ( # ` ( ( 1 ... J ) \ C ) ) e. NN0 |
21 |
20
|
nn0zi |
|- ( # ` ( ( 1 ... J ) \ C ) ) e. ZZ |
22 |
|
zsubcl |
|- ( ( ( # ` ( ( 1 ... J ) i^i C ) ) e. ZZ /\ ( # ` ( ( 1 ... J ) \ C ) ) e. ZZ ) -> ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) e. ZZ ) |
23 |
15 21 22
|
mp2an |
|- ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) e. ZZ |
24 |
8 23
|
eqeltrdi |
|- ( ph -> ( ( F ` C ) ` J ) e. ZZ ) |