Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
id |
|- ( C e. O -> C e. O ) |
7 |
|
nnaddcl |
|- ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) |
8 |
1 2 7
|
mp2an |
|- ( M + N ) e. NN |
9 |
8
|
nnzi |
|- ( M + N ) e. ZZ |
10 |
9
|
a1i |
|- ( C e. O -> ( M + N ) e. ZZ ) |
11 |
1 2 3 4 5 6 10
|
ballotlemfval |
|- ( C e. O -> ( ( F ` C ) ` ( M + N ) ) = ( ( # ` ( ( 1 ... ( M + N ) ) i^i C ) ) - ( # ` ( ( 1 ... ( M + N ) ) \ C ) ) ) ) |
12 |
|
ssrab2 |
|- { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } C_ ~P ( 1 ... ( M + N ) ) |
13 |
3 12
|
eqsstri |
|- O C_ ~P ( 1 ... ( M + N ) ) |
14 |
13
|
sseli |
|- ( C e. O -> C e. ~P ( 1 ... ( M + N ) ) ) |
15 |
14
|
elpwid |
|- ( C e. O -> C C_ ( 1 ... ( M + N ) ) ) |
16 |
|
sseqin2 |
|- ( C C_ ( 1 ... ( M + N ) ) <-> ( ( 1 ... ( M + N ) ) i^i C ) = C ) |
17 |
15 16
|
sylib |
|- ( C e. O -> ( ( 1 ... ( M + N ) ) i^i C ) = C ) |
18 |
17
|
fveq2d |
|- ( C e. O -> ( # ` ( ( 1 ... ( M + N ) ) i^i C ) ) = ( # ` C ) ) |
19 |
|
rabssab |
|- { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } C_ { c | ( # ` c ) = M } |
20 |
19
|
sseli |
|- ( C e. { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } -> C e. { c | ( # ` c ) = M } ) |
21 |
20 3
|
eleq2s |
|- ( C e. O -> C e. { c | ( # ` c ) = M } ) |
22 |
|
fveqeq2 |
|- ( b = C -> ( ( # ` b ) = M <-> ( # ` C ) = M ) ) |
23 |
|
fveqeq2 |
|- ( c = b -> ( ( # ` c ) = M <-> ( # ` b ) = M ) ) |
24 |
23
|
cbvabv |
|- { c | ( # ` c ) = M } = { b | ( # ` b ) = M } |
25 |
22 24
|
elab2g |
|- ( C e. O -> ( C e. { c | ( # ` c ) = M } <-> ( # ` C ) = M ) ) |
26 |
21 25
|
mpbid |
|- ( C e. O -> ( # ` C ) = M ) |
27 |
18 26
|
eqtrd |
|- ( C e. O -> ( # ` ( ( 1 ... ( M + N ) ) i^i C ) ) = M ) |
28 |
|
fzfi |
|- ( 1 ... ( M + N ) ) e. Fin |
29 |
|
hashssdif |
|- ( ( ( 1 ... ( M + N ) ) e. Fin /\ C C_ ( 1 ... ( M + N ) ) ) -> ( # ` ( ( 1 ... ( M + N ) ) \ C ) ) = ( ( # ` ( 1 ... ( M + N ) ) ) - ( # ` C ) ) ) |
30 |
28 15 29
|
sylancr |
|- ( C e. O -> ( # ` ( ( 1 ... ( M + N ) ) \ C ) ) = ( ( # ` ( 1 ... ( M + N ) ) ) - ( # ` C ) ) ) |
31 |
8
|
nnnn0i |
|- ( M + N ) e. NN0 |
32 |
|
hashfz1 |
|- ( ( M + N ) e. NN0 -> ( # ` ( 1 ... ( M + N ) ) ) = ( M + N ) ) |
33 |
31 32
|
mp1i |
|- ( C e. O -> ( # ` ( 1 ... ( M + N ) ) ) = ( M + N ) ) |
34 |
33 26
|
oveq12d |
|- ( C e. O -> ( ( # ` ( 1 ... ( M + N ) ) ) - ( # ` C ) ) = ( ( M + N ) - M ) ) |
35 |
1
|
nncni |
|- M e. CC |
36 |
2
|
nncni |
|- N e. CC |
37 |
|
pncan2 |
|- ( ( M e. CC /\ N e. CC ) -> ( ( M + N ) - M ) = N ) |
38 |
35 36 37
|
mp2an |
|- ( ( M + N ) - M ) = N |
39 |
38
|
a1i |
|- ( C e. O -> ( ( M + N ) - M ) = N ) |
40 |
30 34 39
|
3eqtrd |
|- ( C e. O -> ( # ` ( ( 1 ... ( M + N ) ) \ C ) ) = N ) |
41 |
27 40
|
oveq12d |
|- ( C e. O -> ( ( # ` ( ( 1 ... ( M + N ) ) i^i C ) ) - ( # ` ( ( 1 ... ( M + N ) ) \ C ) ) ) = ( M - N ) ) |
42 |
11 41
|
eqtrd |
|- ( C e. O -> ( ( F ` C ) ` ( M + N ) ) = ( M - N ) ) |