Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotlemfp1.c |
|- ( ph -> C e. O ) |
7 |
|
ballotlemfp1.j |
|- ( ph -> J e. NN ) |
8 |
7
|
nnzd |
|- ( ph -> J e. ZZ ) |
9 |
1 2 3 4 5 6 8
|
ballotlemfval |
|- ( ph -> ( ( F ` C ) ` J ) = ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ -. J e. C ) -> ( ( F ` C ) ` J ) = ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) ) |
11 |
|
fzfi |
|- ( 1 ... ( J - 1 ) ) e. Fin |
12 |
|
inss1 |
|- ( ( 1 ... ( J - 1 ) ) i^i C ) C_ ( 1 ... ( J - 1 ) ) |
13 |
|
ssfi |
|- ( ( ( 1 ... ( J - 1 ) ) e. Fin /\ ( ( 1 ... ( J - 1 ) ) i^i C ) C_ ( 1 ... ( J - 1 ) ) ) -> ( ( 1 ... ( J - 1 ) ) i^i C ) e. Fin ) |
14 |
11 12 13
|
mp2an |
|- ( ( 1 ... ( J - 1 ) ) i^i C ) e. Fin |
15 |
|
hashcl |
|- ( ( ( 1 ... ( J - 1 ) ) i^i C ) e. Fin -> ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) e. NN0 ) |
16 |
14 15
|
ax-mp |
|- ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) e. NN0 |
17 |
16
|
nn0cni |
|- ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) e. CC |
18 |
17
|
a1i |
|- ( ( ph /\ -. J e. C ) -> ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) e. CC ) |
19 |
|
diffi |
|- ( ( 1 ... ( J - 1 ) ) e. Fin -> ( ( 1 ... ( J - 1 ) ) \ C ) e. Fin ) |
20 |
11 19
|
ax-mp |
|- ( ( 1 ... ( J - 1 ) ) \ C ) e. Fin |
21 |
|
hashcl |
|- ( ( ( 1 ... ( J - 1 ) ) \ C ) e. Fin -> ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) e. NN0 ) |
22 |
20 21
|
ax-mp |
|- ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) e. NN0 |
23 |
22
|
nn0cni |
|- ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) e. CC |
24 |
23
|
a1i |
|- ( ( ph /\ -. J e. C ) -> ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) e. CC ) |
25 |
|
1cnd |
|- ( ( ph /\ -. J e. C ) -> 1 e. CC ) |
26 |
18 24 25
|
subsub4d |
|- ( ( ph /\ -. J e. C ) -> ( ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) - 1 ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) + 1 ) ) ) |
27 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
28 |
8 27
|
zsubcld |
|- ( ph -> ( J - 1 ) e. ZZ ) |
29 |
1 2 3 4 5 6 28
|
ballotlemfval |
|- ( ph -> ( ( F ` C ) ` ( J - 1 ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ -. J e. C ) -> ( ( F ` C ) ` ( J - 1 ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) ) |
31 |
30
|
oveq1d |
|- ( ( ph /\ -. J e. C ) -> ( ( ( F ` C ) ` ( J - 1 ) ) - 1 ) = ( ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) - 1 ) ) |
32 |
|
elnnuz |
|- ( J e. NN <-> J e. ( ZZ>= ` 1 ) ) |
33 |
7 32
|
sylib |
|- ( ph -> J e. ( ZZ>= ` 1 ) ) |
34 |
|
fzspl |
|- ( J e. ( ZZ>= ` 1 ) -> ( 1 ... J ) = ( ( 1 ... ( J - 1 ) ) u. { J } ) ) |
35 |
34
|
ineq1d |
|- ( J e. ( ZZ>= ` 1 ) -> ( ( 1 ... J ) i^i C ) = ( ( ( 1 ... ( J - 1 ) ) u. { J } ) i^i C ) ) |
36 |
|
indir |
|- ( ( ( 1 ... ( J - 1 ) ) u. { J } ) i^i C ) = ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) |
37 |
35 36
|
eqtrdi |
|- ( J e. ( ZZ>= ` 1 ) -> ( ( 1 ... J ) i^i C ) = ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) ) |
38 |
33 37
|
syl |
|- ( ph -> ( ( 1 ... J ) i^i C ) = ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ -. J e. C ) -> ( ( 1 ... J ) i^i C ) = ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) ) |
40 |
|
disjsn |
|- ( ( C i^i { J } ) = (/) <-> -. J e. C ) |
41 |
|
incom |
|- ( C i^i { J } ) = ( { J } i^i C ) |
42 |
41
|
eqeq1i |
|- ( ( C i^i { J } ) = (/) <-> ( { J } i^i C ) = (/) ) |
43 |
40 42
|
sylbb1 |
|- ( -. J e. C -> ( { J } i^i C ) = (/) ) |
44 |
43
|
adantl |
|- ( ( ph /\ -. J e. C ) -> ( { J } i^i C ) = (/) ) |
45 |
44
|
uneq2d |
|- ( ( ph /\ -. J e. C ) -> ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) = ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. (/) ) ) |
46 |
|
un0 |
|- ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. (/) ) = ( ( 1 ... ( J - 1 ) ) i^i C ) |
47 |
45 46
|
eqtrdi |
|- ( ( ph /\ -. J e. C ) -> ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) = ( ( 1 ... ( J - 1 ) ) i^i C ) ) |
48 |
39 47
|
eqtrd |
|- ( ( ph /\ -. J e. C ) -> ( ( 1 ... J ) i^i C ) = ( ( 1 ... ( J - 1 ) ) i^i C ) ) |
49 |
48
|
fveq2d |
|- ( ( ph /\ -. J e. C ) -> ( # ` ( ( 1 ... J ) i^i C ) ) = ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) ) |
50 |
34
|
difeq1d |
|- ( J e. ( ZZ>= ` 1 ) -> ( ( 1 ... J ) \ C ) = ( ( ( 1 ... ( J - 1 ) ) u. { J } ) \ C ) ) |
51 |
|
difundir |
|- ( ( ( 1 ... ( J - 1 ) ) u. { J } ) \ C ) = ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) |
52 |
50 51
|
eqtrdi |
|- ( J e. ( ZZ>= ` 1 ) -> ( ( 1 ... J ) \ C ) = ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) ) |
53 |
33 52
|
syl |
|- ( ph -> ( ( 1 ... J ) \ C ) = ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) ) |
54 |
|
disj3 |
|- ( ( { J } i^i C ) = (/) <-> { J } = ( { J } \ C ) ) |
55 |
43 54
|
sylib |
|- ( -. J e. C -> { J } = ( { J } \ C ) ) |
56 |
55
|
eqcomd |
|- ( -. J e. C -> ( { J } \ C ) = { J } ) |
57 |
56
|
uneq2d |
|- ( -. J e. C -> ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) = ( ( ( 1 ... ( J - 1 ) ) \ C ) u. { J } ) ) |
58 |
53 57
|
sylan9eq |
|- ( ( ph /\ -. J e. C ) -> ( ( 1 ... J ) \ C ) = ( ( ( 1 ... ( J - 1 ) ) \ C ) u. { J } ) ) |
59 |
58
|
fveq2d |
|- ( ( ph /\ -. J e. C ) -> ( # ` ( ( 1 ... J ) \ C ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. { J } ) ) ) |
60 |
8
|
adantr |
|- ( ( ph /\ -. J e. C ) -> J e. ZZ ) |
61 |
|
uzid |
|- ( J e. ZZ -> J e. ( ZZ>= ` J ) ) |
62 |
|
uznfz |
|- ( J e. ( ZZ>= ` J ) -> -. J e. ( 1 ... ( J - 1 ) ) ) |
63 |
8 61 62
|
3syl |
|- ( ph -> -. J e. ( 1 ... ( J - 1 ) ) ) |
64 |
63
|
adantr |
|- ( ( ph /\ -. J e. C ) -> -. J e. ( 1 ... ( J - 1 ) ) ) |
65 |
|
difss |
|- ( ( 1 ... ( J - 1 ) ) \ C ) C_ ( 1 ... ( J - 1 ) ) |
66 |
65
|
sseli |
|- ( J e. ( ( 1 ... ( J - 1 ) ) \ C ) -> J e. ( 1 ... ( J - 1 ) ) ) |
67 |
64 66
|
nsyl |
|- ( ( ph /\ -. J e. C ) -> -. J e. ( ( 1 ... ( J - 1 ) ) \ C ) ) |
68 |
|
ssfi |
|- ( ( ( 1 ... ( J - 1 ) ) e. Fin /\ ( ( 1 ... ( J - 1 ) ) \ C ) C_ ( 1 ... ( J - 1 ) ) ) -> ( ( 1 ... ( J - 1 ) ) \ C ) e. Fin ) |
69 |
11 65 68
|
mp2an |
|- ( ( 1 ... ( J - 1 ) ) \ C ) e. Fin |
70 |
67 69
|
jctil |
|- ( ( ph /\ -. J e. C ) -> ( ( ( 1 ... ( J - 1 ) ) \ C ) e. Fin /\ -. J e. ( ( 1 ... ( J - 1 ) ) \ C ) ) ) |
71 |
|
hashunsng |
|- ( J e. ZZ -> ( ( ( ( 1 ... ( J - 1 ) ) \ C ) e. Fin /\ -. J e. ( ( 1 ... ( J - 1 ) ) \ C ) ) -> ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. { J } ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) + 1 ) ) ) |
72 |
60 70 71
|
sylc |
|- ( ( ph /\ -. J e. C ) -> ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. { J } ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) + 1 ) ) |
73 |
59 72
|
eqtrd |
|- ( ( ph /\ -. J e. C ) -> ( # ` ( ( 1 ... J ) \ C ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) + 1 ) ) |
74 |
49 73
|
oveq12d |
|- ( ( ph /\ -. J e. C ) -> ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) + 1 ) ) ) |
75 |
26 31 74
|
3eqtr4rd |
|- ( ( ph /\ -. J e. C ) -> ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) = ( ( ( F ` C ) ` ( J - 1 ) ) - 1 ) ) |
76 |
10 75
|
eqtrd |
|- ( ( ph /\ -. J e. C ) -> ( ( F ` C ) ` J ) = ( ( ( F ` C ) ` ( J - 1 ) ) - 1 ) ) |
77 |
76
|
ex |
|- ( ph -> ( -. J e. C -> ( ( F ` C ) ` J ) = ( ( ( F ` C ) ` ( J - 1 ) ) - 1 ) ) ) |
78 |
9
|
adantr |
|- ( ( ph /\ J e. C ) -> ( ( F ` C ) ` J ) = ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) ) |
79 |
17
|
a1i |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) e. CC ) |
80 |
|
1cnd |
|- ( ( ph /\ J e. C ) -> 1 e. CC ) |
81 |
23
|
a1i |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) e. CC ) |
82 |
79 80 81
|
addsubd |
|- ( ( ph /\ J e. C ) -> ( ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) + 1 ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) = ( ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) + 1 ) ) |
83 |
38
|
fveq2d |
|- ( ph -> ( # ` ( ( 1 ... J ) i^i C ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) ) ) |
84 |
83
|
adantr |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( 1 ... J ) i^i C ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) ) ) |
85 |
|
snssi |
|- ( J e. C -> { J } C_ C ) |
86 |
|
df-ss |
|- ( { J } C_ C <-> ( { J } i^i C ) = { J } ) |
87 |
85 86
|
sylib |
|- ( J e. C -> ( { J } i^i C ) = { J } ) |
88 |
87
|
uneq2d |
|- ( J e. C -> ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) = ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. { J } ) ) |
89 |
88
|
fveq2d |
|- ( J e. C -> ( # ` ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. { J } ) ) ) |
90 |
89
|
adantl |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. ( { J } i^i C ) ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. { J } ) ) ) |
91 |
|
simpr |
|- ( ( ph /\ J e. C ) -> J e. C ) |
92 |
8
|
adantr |
|- ( ( ph /\ J e. C ) -> J e. ZZ ) |
93 |
92 61 62
|
3syl |
|- ( ( ph /\ J e. C ) -> -. J e. ( 1 ... ( J - 1 ) ) ) |
94 |
12
|
sseli |
|- ( J e. ( ( 1 ... ( J - 1 ) ) i^i C ) -> J e. ( 1 ... ( J - 1 ) ) ) |
95 |
93 94
|
nsyl |
|- ( ( ph /\ J e. C ) -> -. J e. ( ( 1 ... ( J - 1 ) ) i^i C ) ) |
96 |
95 14
|
jctil |
|- ( ( ph /\ J e. C ) -> ( ( ( 1 ... ( J - 1 ) ) i^i C ) e. Fin /\ -. J e. ( ( 1 ... ( J - 1 ) ) i^i C ) ) ) |
97 |
|
hashunsng |
|- ( J e. C -> ( ( ( ( 1 ... ( J - 1 ) ) i^i C ) e. Fin /\ -. J e. ( ( 1 ... ( J - 1 ) ) i^i C ) ) -> ( # ` ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. { J } ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) + 1 ) ) ) |
98 |
91 96 97
|
sylc |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( ( 1 ... ( J - 1 ) ) i^i C ) u. { J } ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) + 1 ) ) |
99 |
84 90 98
|
3eqtrd |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( 1 ... J ) i^i C ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) + 1 ) ) |
100 |
53
|
fveq2d |
|- ( ph -> ( # ` ( ( 1 ... J ) \ C ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) ) ) |
101 |
100
|
adantr |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( 1 ... J ) \ C ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) ) ) |
102 |
|
difin2 |
|- ( { J } C_ C -> ( { J } \ C ) = ( ( C \ C ) i^i { J } ) ) |
103 |
|
difid |
|- ( C \ C ) = (/) |
104 |
103
|
ineq1i |
|- ( ( C \ C ) i^i { J } ) = ( (/) i^i { J } ) |
105 |
|
0in |
|- ( (/) i^i { J } ) = (/) |
106 |
104 105
|
eqtri |
|- ( ( C \ C ) i^i { J } ) = (/) |
107 |
102 106
|
eqtrdi |
|- ( { J } C_ C -> ( { J } \ C ) = (/) ) |
108 |
85 107
|
syl |
|- ( J e. C -> ( { J } \ C ) = (/) ) |
109 |
108
|
uneq2d |
|- ( J e. C -> ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) = ( ( ( 1 ... ( J - 1 ) ) \ C ) u. (/) ) ) |
110 |
109
|
fveq2d |
|- ( J e. C -> ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. (/) ) ) ) |
111 |
110
|
adantl |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. ( { J } \ C ) ) ) = ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. (/) ) ) ) |
112 |
|
un0 |
|- ( ( ( 1 ... ( J - 1 ) ) \ C ) u. (/) ) = ( ( 1 ... ( J - 1 ) ) \ C ) |
113 |
112
|
a1i |
|- ( ( ph /\ J e. C ) -> ( ( ( 1 ... ( J - 1 ) ) \ C ) u. (/) ) = ( ( 1 ... ( J - 1 ) ) \ C ) ) |
114 |
113
|
fveq2d |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( ( 1 ... ( J - 1 ) ) \ C ) u. (/) ) ) = ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) |
115 |
101 111 114
|
3eqtrd |
|- ( ( ph /\ J e. C ) -> ( # ` ( ( 1 ... J ) \ C ) ) = ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) |
116 |
99 115
|
oveq12d |
|- ( ( ph /\ J e. C ) -> ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) = ( ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) + 1 ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) ) |
117 |
29
|
adantr |
|- ( ( ph /\ J e. C ) -> ( ( F ` C ) ` ( J - 1 ) ) = ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) ) |
118 |
117
|
oveq1d |
|- ( ( ph /\ J e. C ) -> ( ( ( F ` C ) ` ( J - 1 ) ) + 1 ) = ( ( ( # ` ( ( 1 ... ( J - 1 ) ) i^i C ) ) - ( # ` ( ( 1 ... ( J - 1 ) ) \ C ) ) ) + 1 ) ) |
119 |
82 116 118
|
3eqtr4d |
|- ( ( ph /\ J e. C ) -> ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) = ( ( ( F ` C ) ` ( J - 1 ) ) + 1 ) ) |
120 |
78 119
|
eqtrd |
|- ( ( ph /\ J e. C ) -> ( ( F ` C ) ` J ) = ( ( ( F ` C ) ` ( J - 1 ) ) + 1 ) ) |
121 |
120
|
ex |
|- ( ph -> ( J e. C -> ( ( F ` C ) ` J ) = ( ( ( F ` C ) ` ( J - 1 ) ) + 1 ) ) ) |
122 |
77 121
|
jca |
|- ( ph -> ( ( -. J e. C -> ( ( F ` C ) ` J ) = ( ( ( F ` C ) ` ( J - 1 ) ) - 1 ) ) /\ ( J e. C -> ( ( F ` C ) ` J ) = ( ( ( F ` C ) ` ( J - 1 ) ) + 1 ) ) ) ) |