Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
ballotth.mgtn |
|- N < M |
8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
11 |
|
ballotlemg |
|- .^ = ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) |
12 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
13 |
12
|
simpld |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) |
14 |
|
elfzuz |
|- ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( I ` C ) e. ( ZZ>= ` 1 ) ) |
15 |
|
eluzfz2 |
|- ( ( I ` C ) e. ( ZZ>= ` 1 ) -> ( I ` C ) e. ( 1 ... ( I ` C ) ) ) |
16 |
13 14 15
|
3syl |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( I ` C ) ) ) |
17 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemfrc |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. ( 1 ... ( I ` C ) ) ) -> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) = ( C .^ ( ( ( S ` C ) ` ( I ` C ) ) ... ( I ` C ) ) ) ) |
18 |
16 17
|
mpdan |
|- ( C e. ( O \ E ) -> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) = ( C .^ ( ( ( S ` C ) ` ( I ` C ) ) ... ( I ` C ) ) ) ) |
19 |
1 2 3 4 5 6 7 8 9
|
ballotlemsi |
|- ( C e. ( O \ E ) -> ( ( S ` C ) ` ( I ` C ) ) = 1 ) |
20 |
19
|
oveq1d |
|- ( C e. ( O \ E ) -> ( ( ( S ` C ) ` ( I ` C ) ) ... ( I ` C ) ) = ( 1 ... ( I ` C ) ) ) |
21 |
20
|
oveq2d |
|- ( C e. ( O \ E ) -> ( C .^ ( ( ( S ` C ) ` ( I ` C ) ) ... ( I ` C ) ) ) = ( C .^ ( 1 ... ( I ` C ) ) ) ) |
22 |
18 21
|
eqtrd |
|- ( C e. ( O \ E ) -> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) = ( C .^ ( 1 ... ( I ` C ) ) ) ) |
23 |
|
fz1ssfz0 |
|- ( 1 ... ( M + N ) ) C_ ( 0 ... ( M + N ) ) |
24 |
23 13
|
sselid |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ( 0 ... ( M + N ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemfg |
|- ( ( C e. ( O \ E ) /\ ( I ` C ) e. ( 0 ... ( M + N ) ) ) -> ( ( F ` C ) ` ( I ` C ) ) = ( C .^ ( 1 ... ( I ` C ) ) ) ) |
26 |
24 25
|
mpdan |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` ( I ` C ) ) = ( C .^ ( 1 ... ( I ` C ) ) ) ) |
27 |
12
|
simprd |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 ) |
28 |
22 26 27
|
3eqtr2d |
|- ( C e. ( O \ E ) -> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) = 0 ) |