Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotlemfval.c |
|- ( ph -> C e. O ) |
7 |
|
ballotlemfval.j |
|- ( ph -> J e. ZZ ) |
8 |
|
simpl |
|- ( ( b = C /\ i e. ZZ ) -> b = C ) |
9 |
8
|
ineq2d |
|- ( ( b = C /\ i e. ZZ ) -> ( ( 1 ... i ) i^i b ) = ( ( 1 ... i ) i^i C ) ) |
10 |
9
|
fveq2d |
|- ( ( b = C /\ i e. ZZ ) -> ( # ` ( ( 1 ... i ) i^i b ) ) = ( # ` ( ( 1 ... i ) i^i C ) ) ) |
11 |
8
|
difeq2d |
|- ( ( b = C /\ i e. ZZ ) -> ( ( 1 ... i ) \ b ) = ( ( 1 ... i ) \ C ) ) |
12 |
11
|
fveq2d |
|- ( ( b = C /\ i e. ZZ ) -> ( # ` ( ( 1 ... i ) \ b ) ) = ( # ` ( ( 1 ... i ) \ C ) ) ) |
13 |
10 12
|
oveq12d |
|- ( ( b = C /\ i e. ZZ ) -> ( ( # ` ( ( 1 ... i ) i^i b ) ) - ( # ` ( ( 1 ... i ) \ b ) ) ) = ( ( # ` ( ( 1 ... i ) i^i C ) ) - ( # ` ( ( 1 ... i ) \ C ) ) ) ) |
14 |
13
|
mpteq2dva |
|- ( b = C -> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i b ) ) - ( # ` ( ( 1 ... i ) \ b ) ) ) ) = ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i C ) ) - ( # ` ( ( 1 ... i ) \ C ) ) ) ) ) |
15 |
|
ineq2 |
|- ( b = c -> ( ( 1 ... i ) i^i b ) = ( ( 1 ... i ) i^i c ) ) |
16 |
15
|
fveq2d |
|- ( b = c -> ( # ` ( ( 1 ... i ) i^i b ) ) = ( # ` ( ( 1 ... i ) i^i c ) ) ) |
17 |
|
difeq2 |
|- ( b = c -> ( ( 1 ... i ) \ b ) = ( ( 1 ... i ) \ c ) ) |
18 |
17
|
fveq2d |
|- ( b = c -> ( # ` ( ( 1 ... i ) \ b ) ) = ( # ` ( ( 1 ... i ) \ c ) ) ) |
19 |
16 18
|
oveq12d |
|- ( b = c -> ( ( # ` ( ( 1 ... i ) i^i b ) ) - ( # ` ( ( 1 ... i ) \ b ) ) ) = ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) |
20 |
19
|
mpteq2dv |
|- ( b = c -> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i b ) ) - ( # ` ( ( 1 ... i ) \ b ) ) ) ) = ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
21 |
20
|
cbvmptv |
|- ( b e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i b ) ) - ( # ` ( ( 1 ... i ) \ b ) ) ) ) ) = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
22 |
5 21
|
eqtr4i |
|- F = ( b e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i b ) ) - ( # ` ( ( 1 ... i ) \ b ) ) ) ) ) |
23 |
|
zex |
|- ZZ e. _V |
24 |
23
|
mptex |
|- ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i C ) ) - ( # ` ( ( 1 ... i ) \ C ) ) ) ) e. _V |
25 |
14 22 24
|
fvmpt |
|- ( C e. O -> ( F ` C ) = ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i C ) ) - ( # ` ( ( 1 ... i ) \ C ) ) ) ) ) |
26 |
6 25
|
syl |
|- ( ph -> ( F ` C ) = ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i C ) ) - ( # ` ( ( 1 ... i ) \ C ) ) ) ) ) |
27 |
|
oveq2 |
|- ( i = J -> ( 1 ... i ) = ( 1 ... J ) ) |
28 |
27
|
ineq1d |
|- ( i = J -> ( ( 1 ... i ) i^i C ) = ( ( 1 ... J ) i^i C ) ) |
29 |
28
|
fveq2d |
|- ( i = J -> ( # ` ( ( 1 ... i ) i^i C ) ) = ( # ` ( ( 1 ... J ) i^i C ) ) ) |
30 |
27
|
difeq1d |
|- ( i = J -> ( ( 1 ... i ) \ C ) = ( ( 1 ... J ) \ C ) ) |
31 |
30
|
fveq2d |
|- ( i = J -> ( # ` ( ( 1 ... i ) \ C ) ) = ( # ` ( ( 1 ... J ) \ C ) ) ) |
32 |
29 31
|
oveq12d |
|- ( i = J -> ( ( # ` ( ( 1 ... i ) i^i C ) ) - ( # ` ( ( 1 ... i ) \ C ) ) ) = ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) ) |
33 |
32
|
adantl |
|- ( ( ph /\ i = J ) -> ( ( # ` ( ( 1 ... i ) i^i C ) ) - ( # ` ( ( 1 ... i ) \ C ) ) ) = ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) ) |
34 |
|
ovexd |
|- ( ph -> ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) e. _V ) |
35 |
26 33 7 34
|
fvmptd |
|- ( ph -> ( ( F ` C ) ` J ) = ( ( # ` ( ( 1 ... J ) i^i C ) ) - ( # ` ( ( 1 ... J ) \ C ) ) ) ) |