Metamath Proof Explorer


Theorem ballotlemfval0

Description: ( FC ) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016)

Ref Expression
Hypotheses ballotth.m
|- M e. NN
ballotth.n
|- N e. NN
ballotth.o
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
ballotth.p
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )
ballotth.f
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )
Assertion ballotlemfval0
|- ( C e. O -> ( ( F ` C ) ` 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 ballotth.m
 |-  M e. NN
2 ballotth.n
 |-  N e. NN
3 ballotth.o
 |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
4 ballotth.p
 |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )
5 ballotth.f
 |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )
6 id
 |-  ( C e. O -> C e. O )
7 0zd
 |-  ( C e. O -> 0 e. ZZ )
8 1 2 3 4 5 6 7 ballotlemfval
 |-  ( C e. O -> ( ( F ` C ) ` 0 ) = ( ( # ` ( ( 1 ... 0 ) i^i C ) ) - ( # ` ( ( 1 ... 0 ) \ C ) ) ) )
9 fz10
 |-  ( 1 ... 0 ) = (/)
10 9 ineq1i
 |-  ( ( 1 ... 0 ) i^i C ) = ( (/) i^i C )
11 incom
 |-  ( C i^i (/) ) = ( (/) i^i C )
12 in0
 |-  ( C i^i (/) ) = (/)
13 10 11 12 3eqtr2i
 |-  ( ( 1 ... 0 ) i^i C ) = (/)
14 13 fveq2i
 |-  ( # ` ( ( 1 ... 0 ) i^i C ) ) = ( # ` (/) )
15 hash0
 |-  ( # ` (/) ) = 0
16 14 15 eqtri
 |-  ( # ` ( ( 1 ... 0 ) i^i C ) ) = 0
17 9 difeq1i
 |-  ( ( 1 ... 0 ) \ C ) = ( (/) \ C )
18 0dif
 |-  ( (/) \ C ) = (/)
19 17 18 eqtri
 |-  ( ( 1 ... 0 ) \ C ) = (/)
20 19 fveq2i
 |-  ( # ` ( ( 1 ... 0 ) \ C ) ) = ( # ` (/) )
21 20 15 eqtri
 |-  ( # ` ( ( 1 ... 0 ) \ C ) ) = 0
22 16 21 oveq12i
 |-  ( ( # ` ( ( 1 ... 0 ) i^i C ) ) - ( # ` ( ( 1 ... 0 ) \ C ) ) ) = ( 0 - 0 )
23 0m0e0
 |-  ( 0 - 0 ) = 0
24 22 23 eqtri
 |-  ( ( # ` ( ( 1 ... 0 ) i^i C ) ) - ( # ` ( ( 1 ... 0 ) \ C ) ) ) = 0
25 8 24 eqtrdi
 |-  ( C e. O -> ( ( F ` C ) ` 0 ) = 0 )