| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
ballotth.mgtn |
|- N < M |
| 8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
| 9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
| 10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
| 11 |
|
ballotlemg |
|- .^ = ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) |
| 12 |
|
ballotlemgun.1 |
|- ( ph -> U e. Fin ) |
| 13 |
|
ballotlemgun.2 |
|- ( ph -> V e. Fin ) |
| 14 |
|
ballotlemgun.3 |
|- ( ph -> W e. Fin ) |
| 15 |
|
ballotlemgun.4 |
|- ( ph -> ( V i^i W ) = (/) ) |
| 16 |
|
indir |
|- ( ( V u. W ) i^i U ) = ( ( V i^i U ) u. ( W i^i U ) ) |
| 17 |
16
|
fveq2i |
|- ( # ` ( ( V u. W ) i^i U ) ) = ( # ` ( ( V i^i U ) u. ( W i^i U ) ) ) |
| 18 |
|
infi |
|- ( V e. Fin -> ( V i^i U ) e. Fin ) |
| 19 |
13 18
|
syl |
|- ( ph -> ( V i^i U ) e. Fin ) |
| 20 |
|
infi |
|- ( W e. Fin -> ( W i^i U ) e. Fin ) |
| 21 |
14 20
|
syl |
|- ( ph -> ( W i^i U ) e. Fin ) |
| 22 |
15
|
ineq1d |
|- ( ph -> ( ( V i^i W ) i^i U ) = ( (/) i^i U ) ) |
| 23 |
|
inindir |
|- ( ( V i^i W ) i^i U ) = ( ( V i^i U ) i^i ( W i^i U ) ) |
| 24 |
|
0in |
|- ( (/) i^i U ) = (/) |
| 25 |
22 23 24
|
3eqtr3g |
|- ( ph -> ( ( V i^i U ) i^i ( W i^i U ) ) = (/) ) |
| 26 |
|
hashun |
|- ( ( ( V i^i U ) e. Fin /\ ( W i^i U ) e. Fin /\ ( ( V i^i U ) i^i ( W i^i U ) ) = (/) ) -> ( # ` ( ( V i^i U ) u. ( W i^i U ) ) ) = ( ( # ` ( V i^i U ) ) + ( # ` ( W i^i U ) ) ) ) |
| 27 |
19 21 25 26
|
syl3anc |
|- ( ph -> ( # ` ( ( V i^i U ) u. ( W i^i U ) ) ) = ( ( # ` ( V i^i U ) ) + ( # ` ( W i^i U ) ) ) ) |
| 28 |
17 27
|
eqtrid |
|- ( ph -> ( # ` ( ( V u. W ) i^i U ) ) = ( ( # ` ( V i^i U ) ) + ( # ` ( W i^i U ) ) ) ) |
| 29 |
|
difundir |
|- ( ( V u. W ) \ U ) = ( ( V \ U ) u. ( W \ U ) ) |
| 30 |
29
|
fveq2i |
|- ( # ` ( ( V u. W ) \ U ) ) = ( # ` ( ( V \ U ) u. ( W \ U ) ) ) |
| 31 |
|
diffi |
|- ( V e. Fin -> ( V \ U ) e. Fin ) |
| 32 |
13 31
|
syl |
|- ( ph -> ( V \ U ) e. Fin ) |
| 33 |
|
diffi |
|- ( W e. Fin -> ( W \ U ) e. Fin ) |
| 34 |
14 33
|
syl |
|- ( ph -> ( W \ U ) e. Fin ) |
| 35 |
15
|
difeq1d |
|- ( ph -> ( ( V i^i W ) \ U ) = ( (/) \ U ) ) |
| 36 |
|
difindir |
|- ( ( V i^i W ) \ U ) = ( ( V \ U ) i^i ( W \ U ) ) |
| 37 |
|
0dif |
|- ( (/) \ U ) = (/) |
| 38 |
35 36 37
|
3eqtr3g |
|- ( ph -> ( ( V \ U ) i^i ( W \ U ) ) = (/) ) |
| 39 |
|
hashun |
|- ( ( ( V \ U ) e. Fin /\ ( W \ U ) e. Fin /\ ( ( V \ U ) i^i ( W \ U ) ) = (/) ) -> ( # ` ( ( V \ U ) u. ( W \ U ) ) ) = ( ( # ` ( V \ U ) ) + ( # ` ( W \ U ) ) ) ) |
| 40 |
32 34 38 39
|
syl3anc |
|- ( ph -> ( # ` ( ( V \ U ) u. ( W \ U ) ) ) = ( ( # ` ( V \ U ) ) + ( # ` ( W \ U ) ) ) ) |
| 41 |
30 40
|
eqtrid |
|- ( ph -> ( # ` ( ( V u. W ) \ U ) ) = ( ( # ` ( V \ U ) ) + ( # ` ( W \ U ) ) ) ) |
| 42 |
28 41
|
oveq12d |
|- ( ph -> ( ( # ` ( ( V u. W ) i^i U ) ) - ( # ` ( ( V u. W ) \ U ) ) ) = ( ( ( # ` ( V i^i U ) ) + ( # ` ( W i^i U ) ) ) - ( ( # ` ( V \ U ) ) + ( # ` ( W \ U ) ) ) ) ) |
| 43 |
|
hashcl |
|- ( ( V i^i U ) e. Fin -> ( # ` ( V i^i U ) ) e. NN0 ) |
| 44 |
13 18 43
|
3syl |
|- ( ph -> ( # ` ( V i^i U ) ) e. NN0 ) |
| 45 |
44
|
nn0cnd |
|- ( ph -> ( # ` ( V i^i U ) ) e. CC ) |
| 46 |
|
hashcl |
|- ( ( W i^i U ) e. Fin -> ( # ` ( W i^i U ) ) e. NN0 ) |
| 47 |
14 20 46
|
3syl |
|- ( ph -> ( # ` ( W i^i U ) ) e. NN0 ) |
| 48 |
47
|
nn0cnd |
|- ( ph -> ( # ` ( W i^i U ) ) e. CC ) |
| 49 |
|
hashcl |
|- ( ( V \ U ) e. Fin -> ( # ` ( V \ U ) ) e. NN0 ) |
| 50 |
13 31 49
|
3syl |
|- ( ph -> ( # ` ( V \ U ) ) e. NN0 ) |
| 51 |
50
|
nn0cnd |
|- ( ph -> ( # ` ( V \ U ) ) e. CC ) |
| 52 |
|
hashcl |
|- ( ( W \ U ) e. Fin -> ( # ` ( W \ U ) ) e. NN0 ) |
| 53 |
14 33 52
|
3syl |
|- ( ph -> ( # ` ( W \ U ) ) e. NN0 ) |
| 54 |
53
|
nn0cnd |
|- ( ph -> ( # ` ( W \ U ) ) e. CC ) |
| 55 |
45 48 51 54
|
addsub4d |
|- ( ph -> ( ( ( # ` ( V i^i U ) ) + ( # ` ( W i^i U ) ) ) - ( ( # ` ( V \ U ) ) + ( # ` ( W \ U ) ) ) ) = ( ( ( # ` ( V i^i U ) ) - ( # ` ( V \ U ) ) ) + ( ( # ` ( W i^i U ) ) - ( # ` ( W \ U ) ) ) ) ) |
| 56 |
42 55
|
eqtrd |
|- ( ph -> ( ( # ` ( ( V u. W ) i^i U ) ) - ( # ` ( ( V u. W ) \ U ) ) ) = ( ( ( # ` ( V i^i U ) ) - ( # ` ( V \ U ) ) ) + ( ( # ` ( W i^i U ) ) - ( # ` ( W \ U ) ) ) ) ) |
| 57 |
|
unfi |
|- ( ( V e. Fin /\ W e. Fin ) -> ( V u. W ) e. Fin ) |
| 58 |
13 14 57
|
syl2anc |
|- ( ph -> ( V u. W ) e. Fin ) |
| 59 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemgval |
|- ( ( U e. Fin /\ ( V u. W ) e. Fin ) -> ( U .^ ( V u. W ) ) = ( ( # ` ( ( V u. W ) i^i U ) ) - ( # ` ( ( V u. W ) \ U ) ) ) ) |
| 60 |
12 58 59
|
syl2anc |
|- ( ph -> ( U .^ ( V u. W ) ) = ( ( # ` ( ( V u. W ) i^i U ) ) - ( # ` ( ( V u. W ) \ U ) ) ) ) |
| 61 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemgval |
|- ( ( U e. Fin /\ V e. Fin ) -> ( U .^ V ) = ( ( # ` ( V i^i U ) ) - ( # ` ( V \ U ) ) ) ) |
| 62 |
12 13 61
|
syl2anc |
|- ( ph -> ( U .^ V ) = ( ( # ` ( V i^i U ) ) - ( # ` ( V \ U ) ) ) ) |
| 63 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemgval |
|- ( ( U e. Fin /\ W e. Fin ) -> ( U .^ W ) = ( ( # ` ( W i^i U ) ) - ( # ` ( W \ U ) ) ) ) |
| 64 |
12 14 63
|
syl2anc |
|- ( ph -> ( U .^ W ) = ( ( # ` ( W i^i U ) ) - ( # ` ( W \ U ) ) ) ) |
| 65 |
62 64
|
oveq12d |
|- ( ph -> ( ( U .^ V ) + ( U .^ W ) ) = ( ( ( # ` ( V i^i U ) ) - ( # ` ( V \ U ) ) ) + ( ( # ` ( W i^i U ) ) - ( # ` ( W \ U ) ) ) ) ) |
| 66 |
56 60 65
|
3eqtr4d |
|- ( ph -> ( U .^ ( V u. W ) ) = ( ( U .^ V ) + ( U .^ W ) ) ) |