Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
ballotth.mgtn |
|- N < M |
8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
11 |
|
ballotlemg |
|- .^ = ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) |
12 |
|
ineq2 |
|- ( u = U -> ( v i^i u ) = ( v i^i U ) ) |
13 |
12
|
fveq2d |
|- ( u = U -> ( # ` ( v i^i u ) ) = ( # ` ( v i^i U ) ) ) |
14 |
|
difeq2 |
|- ( u = U -> ( v \ u ) = ( v \ U ) ) |
15 |
14
|
fveq2d |
|- ( u = U -> ( # ` ( v \ u ) ) = ( # ` ( v \ U ) ) ) |
16 |
13 15
|
oveq12d |
|- ( u = U -> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) = ( ( # ` ( v i^i U ) ) - ( # ` ( v \ U ) ) ) ) |
17 |
|
ineq1 |
|- ( v = V -> ( v i^i U ) = ( V i^i U ) ) |
18 |
17
|
fveq2d |
|- ( v = V -> ( # ` ( v i^i U ) ) = ( # ` ( V i^i U ) ) ) |
19 |
|
difeq1 |
|- ( v = V -> ( v \ U ) = ( V \ U ) ) |
20 |
19
|
fveq2d |
|- ( v = V -> ( # ` ( v \ U ) ) = ( # ` ( V \ U ) ) ) |
21 |
18 20
|
oveq12d |
|- ( v = V -> ( ( # ` ( v i^i U ) ) - ( # ` ( v \ U ) ) ) = ( ( # ` ( V i^i U ) ) - ( # ` ( V \ U ) ) ) ) |
22 |
|
ovex |
|- ( ( # ` ( V i^i U ) ) - ( # ` ( V \ U ) ) ) e. _V |
23 |
16 21 11 22
|
ovmpo |
|- ( ( U e. Fin /\ V e. Fin ) -> ( U .^ V ) = ( ( # ` ( V i^i U ) ) - ( # ` ( V \ U ) ) ) ) |