Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
ballotth.mgtn |
|- N < M |
8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
9 |
|
elfzle2 |
|- ( k e. ( 1 ... ( ( I ` C ) - 1 ) ) -> k <_ ( ( I ` C ) - 1 ) ) |
10 |
9
|
adantl |
|- ( ( C e. ( O \ E ) /\ k e. ( 1 ... ( ( I ` C ) - 1 ) ) ) -> k <_ ( ( I ` C ) - 1 ) ) |
11 |
|
elfzelz |
|- ( k e. ( 1 ... ( ( I ` C ) - 1 ) ) -> k e. ZZ ) |
12 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
13 |
12
|
simpld |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) |
14 |
13
|
elfzelzd |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ZZ ) |
15 |
|
zltlem1 |
|- ( ( k e. ZZ /\ ( I ` C ) e. ZZ ) -> ( k < ( I ` C ) <-> k <_ ( ( I ` C ) - 1 ) ) ) |
16 |
11 14 15
|
syl2anr |
|- ( ( C e. ( O \ E ) /\ k e. ( 1 ... ( ( I ` C ) - 1 ) ) ) -> ( k < ( I ` C ) <-> k <_ ( ( I ` C ) - 1 ) ) ) |
17 |
10 16
|
mpbird |
|- ( ( C e. ( O \ E ) /\ k e. ( 1 ... ( ( I ` C ) - 1 ) ) ) -> k < ( I ` C ) ) |
18 |
17
|
adantr |
|- ( ( ( C e. ( O \ E ) /\ k e. ( 1 ... ( ( I ` C ) - 1 ) ) ) /\ ( ( F ` C ) ` k ) = 0 ) -> k < ( I ` C ) ) |
19 |
|
1zzd |
|- ( C e. ( O \ E ) -> 1 e. ZZ ) |
20 |
14 19
|
zsubcld |
|- ( C e. ( O \ E ) -> ( ( I ` C ) - 1 ) e. ZZ ) |
21 |
20
|
zred |
|- ( C e. ( O \ E ) -> ( ( I ` C ) - 1 ) e. RR ) |
22 |
|
nnaddcl |
|- ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) |
23 |
1 2 22
|
mp2an |
|- ( M + N ) e. NN |
24 |
23
|
a1i |
|- ( C e. ( O \ E ) -> ( M + N ) e. NN ) |
25 |
24
|
nnred |
|- ( C e. ( O \ E ) -> ( M + N ) e. RR ) |
26 |
|
elfzle2 |
|- ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( I ` C ) <_ ( M + N ) ) |
27 |
13 26
|
syl |
|- ( C e. ( O \ E ) -> ( I ` C ) <_ ( M + N ) ) |
28 |
24
|
nnzd |
|- ( C e. ( O \ E ) -> ( M + N ) e. ZZ ) |
29 |
|
zlem1lt |
|- ( ( ( I ` C ) e. ZZ /\ ( M + N ) e. ZZ ) -> ( ( I ` C ) <_ ( M + N ) <-> ( ( I ` C ) - 1 ) < ( M + N ) ) ) |
30 |
14 28 29
|
syl2anc |
|- ( C e. ( O \ E ) -> ( ( I ` C ) <_ ( M + N ) <-> ( ( I ` C ) - 1 ) < ( M + N ) ) ) |
31 |
27 30
|
mpbid |
|- ( C e. ( O \ E ) -> ( ( I ` C ) - 1 ) < ( M + N ) ) |
32 |
21 25 31
|
ltled |
|- ( C e. ( O \ E ) -> ( ( I ` C ) - 1 ) <_ ( M + N ) ) |
33 |
|
eluz |
|- ( ( ( ( I ` C ) - 1 ) e. ZZ /\ ( M + N ) e. ZZ ) -> ( ( M + N ) e. ( ZZ>= ` ( ( I ` C ) - 1 ) ) <-> ( ( I ` C ) - 1 ) <_ ( M + N ) ) ) |
34 |
20 28 33
|
syl2anc |
|- ( C e. ( O \ E ) -> ( ( M + N ) e. ( ZZ>= ` ( ( I ` C ) - 1 ) ) <-> ( ( I ` C ) - 1 ) <_ ( M + N ) ) ) |
35 |
32 34
|
mpbird |
|- ( C e. ( O \ E ) -> ( M + N ) e. ( ZZ>= ` ( ( I ` C ) - 1 ) ) ) |
36 |
|
fzss2 |
|- ( ( M + N ) e. ( ZZ>= ` ( ( I ` C ) - 1 ) ) -> ( 1 ... ( ( I ` C ) - 1 ) ) C_ ( 1 ... ( M + N ) ) ) |
37 |
35 36
|
syl |
|- ( C e. ( O \ E ) -> ( 1 ... ( ( I ` C ) - 1 ) ) C_ ( 1 ... ( M + N ) ) ) |
38 |
37
|
sseld |
|- ( C e. ( O \ E ) -> ( k e. ( 1 ... ( ( I ` C ) - 1 ) ) -> k e. ( 1 ... ( M + N ) ) ) ) |
39 |
|
rabid |
|- ( k e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } <-> ( k e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` k ) = 0 ) ) |
40 |
1 2 3 4 5 6 7 8
|
ballotlemsup |
|- ( C e. ( O \ E ) -> E. z e. RR ( A. w e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -. w < z /\ A. w e. RR ( z < w -> E. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } y < w ) ) ) |
41 |
|
ltso |
|- < Or RR |
42 |
41
|
a1i |
|- ( E. z e. RR ( A. w e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -. w < z /\ A. w e. RR ( z < w -> E. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } y < w ) ) -> < Or RR ) |
43 |
|
id |
|- ( E. z e. RR ( A. w e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -. w < z /\ A. w e. RR ( z < w -> E. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } y < w ) ) -> E. z e. RR ( A. w e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -. w < z /\ A. w e. RR ( z < w -> E. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } y < w ) ) ) |
44 |
42 43
|
inflb |
|- ( E. z e. RR ( A. w e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -. w < z /\ A. w e. RR ( z < w -> E. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } y < w ) ) -> ( k e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -> -. k < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) ) |
45 |
40 44
|
syl |
|- ( C e. ( O \ E ) -> ( k e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -> -. k < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) ) |
46 |
1 2 3 4 5 6 7 8
|
ballotlemi |
|- ( C e. ( O \ E ) -> ( I ` C ) = inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) |
47 |
46
|
breq2d |
|- ( C e. ( O \ E ) -> ( k < ( I ` C ) <-> k < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) ) |
48 |
47
|
notbid |
|- ( C e. ( O \ E ) -> ( -. k < ( I ` C ) <-> -. k < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) ) |
49 |
45 48
|
sylibrd |
|- ( C e. ( O \ E ) -> ( k e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -> -. k < ( I ` C ) ) ) |
50 |
39 49
|
syl5bir |
|- ( C e. ( O \ E ) -> ( ( k e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` k ) = 0 ) -> -. k < ( I ` C ) ) ) |
51 |
38 50
|
syland |
|- ( C e. ( O \ E ) -> ( ( k e. ( 1 ... ( ( I ` C ) - 1 ) ) /\ ( ( F ` C ) ` k ) = 0 ) -> -. k < ( I ` C ) ) ) |
52 |
51
|
imp |
|- ( ( C e. ( O \ E ) /\ ( k e. ( 1 ... ( ( I ` C ) - 1 ) ) /\ ( ( F ` C ) ` k ) = 0 ) ) -> -. k < ( I ` C ) ) |
53 |
|
biid |
|- ( k < ( I ` C ) <-> k < ( I ` C ) ) |
54 |
52 53
|
sylnib |
|- ( ( C e. ( O \ E ) /\ ( k e. ( 1 ... ( ( I ` C ) - 1 ) ) /\ ( ( F ` C ) ` k ) = 0 ) ) -> -. k < ( I ` C ) ) |
55 |
54
|
anassrs |
|- ( ( ( C e. ( O \ E ) /\ k e. ( 1 ... ( ( I ` C ) - 1 ) ) ) /\ ( ( F ` C ) ` k ) = 0 ) -> -. k < ( I ` C ) ) |
56 |
18 55
|
pm2.65da |
|- ( ( C e. ( O \ E ) /\ k e. ( 1 ... ( ( I ` C ) - 1 ) ) ) -> -. ( ( F ` C ) ` k ) = 0 ) |
57 |
56
|
nrexdv |
|- ( C e. ( O \ E ) -> -. E. k e. ( 1 ... ( ( I ` C ) - 1 ) ) ( ( F ` C ) ` k ) = 0 ) |