Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
ballotth.mgtn |
|- N < M |
8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemrc |
|- ( C e. ( O \ E ) -> ( R ` C ) e. ( O \ E ) ) |
12 |
1 2 3 4 5 6 7 8
|
ballotlemi |
|- ( ( R ` C ) e. ( O \ E ) -> ( I ` ( R ` C ) ) = inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } , RR , < ) ) |
13 |
11 12
|
syl |
|- ( C e. ( O \ E ) -> ( I ` ( R ` C ) ) = inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } , RR , < ) ) |
14 |
|
ltso |
|- < Or RR |
15 |
14
|
a1i |
|- ( C e. ( O \ E ) -> < Or RR ) |
16 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
17 |
16
|
simpld |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) |
18 |
17
|
elfzelzd |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ZZ ) |
19 |
18
|
zred |
|- ( C e. ( O \ E ) -> ( I ` C ) e. RR ) |
20 |
|
eqid |
|- ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) = ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 20
|
ballotlemfrci |
|- ( C e. ( O \ E ) -> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) = 0 ) |
22 |
|
fveqeq2 |
|- ( k = ( I ` C ) -> ( ( ( F ` ( R ` C ) ) ` k ) = 0 <-> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) = 0 ) ) |
23 |
22
|
elrab |
|- ( ( I ` C ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } <-> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` ( R ` C ) ) ` ( I ` C ) ) = 0 ) ) |
24 |
17 21 23
|
sylanbrc |
|- ( C e. ( O \ E ) -> ( I ` C ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } ) |
25 |
|
elrabi |
|- ( y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } -> y e. ( 1 ... ( M + N ) ) ) |
26 |
25
|
anim2i |
|- ( ( C e. ( O \ E ) /\ y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } ) -> ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) ) ) |
27 |
|
simpr |
|- ( ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) ) /\ y < ( I ` C ) ) -> y < ( I ` C ) ) |
28 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemfrcn0 |
|- ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) /\ y < ( I ` C ) ) -> ( ( F ` ( R ` C ) ) ` y ) =/= 0 ) |
29 |
28
|
neneqd |
|- ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) /\ y < ( I ` C ) ) -> -. ( ( F ` ( R ` C ) ) ` y ) = 0 ) |
30 |
|
fveqeq2 |
|- ( k = y -> ( ( ( F ` ( R ` C ) ) ` k ) = 0 <-> ( ( F ` ( R ` C ) ) ` y ) = 0 ) ) |
31 |
30
|
elrab |
|- ( y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } <-> ( y e. ( 1 ... ( M + N ) ) /\ ( ( F ` ( R ` C ) ) ` y ) = 0 ) ) |
32 |
31
|
simprbi |
|- ( y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } -> ( ( F ` ( R ` C ) ) ` y ) = 0 ) |
33 |
29 32
|
nsyl |
|- ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) /\ y < ( I ` C ) ) -> -. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } ) |
34 |
33
|
3expa |
|- ( ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) ) /\ y < ( I ` C ) ) -> -. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } ) |
35 |
27 34
|
syldan |
|- ( ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) ) /\ y < ( I ` C ) ) -> -. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } ) |
36 |
35
|
ex |
|- ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) ) -> ( y < ( I ` C ) -> -. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } ) ) |
37 |
36
|
con2d |
|- ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) ) -> ( y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } -> -. y < ( I ` C ) ) ) |
38 |
37
|
imp |
|- ( ( ( C e. ( O \ E ) /\ y e. ( 1 ... ( M + N ) ) ) /\ y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } ) -> -. y < ( I ` C ) ) |
39 |
26 38
|
sylancom |
|- ( ( C e. ( O \ E ) /\ y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } ) -> -. y < ( I ` C ) ) |
40 |
15 19 24 39
|
infmin |
|- ( C e. ( O \ E ) -> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` ( R ` C ) ) ` k ) = 0 } , RR , < ) = ( I ` C ) ) |
41 |
13 40
|
eqtrd |
|- ( C e. ( O \ E ) -> ( I ` ( R ` C ) ) = ( I ` C ) ) |