Metamath Proof Explorer


Theorem ballotlemoex

Description: O is a set. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m
|- M e. NN
ballotth.n
|- N e. NN
ballotth.o
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
Assertion ballotlemoex
|- O e. _V

Proof

Step Hyp Ref Expression
1 ballotth.m
 |-  M e. NN
2 ballotth.n
 |-  N e. NN
3 ballotth.o
 |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
4 ovex
 |-  ( 1 ... ( M + N ) ) e. _V
5 4 pwex
 |-  ~P ( 1 ... ( M + N ) ) e. _V
6 3 5 rabex2
 |-  O e. _V