| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
ballotth.mgtn |
|- N < M |
| 8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
| 9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
| 10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemrinv0 |
|- ( ( c e. ( O \ E ) /\ d = ( ( S ` c ) " c ) ) -> ( d e. ( O \ E ) /\ c = ( ( S ` d ) " d ) ) ) |
| 12 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemrinv0 |
|- ( ( d e. ( O \ E ) /\ c = ( ( S ` d ) " d ) ) -> ( c e. ( O \ E ) /\ d = ( ( S ` c ) " c ) ) ) |
| 13 |
11 12
|
impbii |
|- ( ( c e. ( O \ E ) /\ d = ( ( S ` c ) " c ) ) <-> ( d e. ( O \ E ) /\ c = ( ( S ` d ) " d ) ) ) |
| 14 |
13
|
a1i |
|- ( T. -> ( ( c e. ( O \ E ) /\ d = ( ( S ` c ) " c ) ) <-> ( d e. ( O \ E ) /\ c = ( ( S ` d ) " d ) ) ) ) |
| 15 |
14
|
mptcnv |
|- ( T. -> `' ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) = ( d e. ( O \ E ) |-> ( ( S ` d ) " d ) ) ) |
| 16 |
15
|
mptru |
|- `' ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) = ( d e. ( O \ E ) |-> ( ( S ` d ) " d ) ) |
| 17 |
|
fveq2 |
|- ( d = c -> ( S ` d ) = ( S ` c ) ) |
| 18 |
|
id |
|- ( d = c -> d = c ) |
| 19 |
17 18
|
imaeq12d |
|- ( d = c -> ( ( S ` d ) " d ) = ( ( S ` c ) " c ) ) |
| 20 |
19
|
cbvmptv |
|- ( d e. ( O \ E ) |-> ( ( S ` d ) " d ) ) = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
| 21 |
16 20
|
eqtri |
|- `' ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
| 22 |
10
|
cnveqi |
|- `' R = `' ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
| 23 |
21 22 10
|
3eqtr4i |
|- `' R = R |