Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
ballotth.mgtn |
|- N < M |
8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemrv |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( J e. ( R ` C ) <-> if ( J <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - J ) , J ) e. C ) ) |
12 |
11
|
3adant3 |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ ( I ` C ) < J ) -> ( J e. ( R ` C ) <-> if ( J <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - J ) , J ) e. C ) ) |
13 |
|
fzssuz |
|- ( 1 ... ( M + N ) ) C_ ( ZZ>= ` 1 ) |
14 |
|
uzssz |
|- ( ZZ>= ` 1 ) C_ ZZ |
15 |
13 14
|
sstri |
|- ( 1 ... ( M + N ) ) C_ ZZ |
16 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
17 |
16
|
simpld |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) |
18 |
15 17
|
sselid |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ZZ ) |
19 |
18
|
adantr |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( I ` C ) e. ZZ ) |
20 |
19
|
zred |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( I ` C ) e. RR ) |
21 |
|
simpr |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> J e. ( 1 ... ( M + N ) ) ) |
22 |
15 21
|
sselid |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> J e. ZZ ) |
23 |
22
|
zred |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> J e. RR ) |
24 |
20 23
|
ltnled |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( ( I ` C ) < J <-> -. J <_ ( I ` C ) ) ) |
25 |
24
|
biimp3a |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ ( I ` C ) < J ) -> -. J <_ ( I ` C ) ) |
26 |
25
|
iffalsed |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ ( I ` C ) < J ) -> if ( J <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - J ) , J ) = J ) |
27 |
26
|
eleq1d |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ ( I ` C ) < J ) -> ( if ( J <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - J ) , J ) e. C <-> J e. C ) ) |
28 |
12 27
|
bitrd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ ( I ` C ) < J ) -> ( J e. ( R ` C ) <-> J e. C ) ) |