Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
ballotth.mgtn |
|- N < M |
8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemrval |
|- ( C e. ( O \ E ) -> ( R ` C ) = ( ( S ` C ) " C ) ) |
12 |
11
|
imaeq2d |
|- ( C e. ( O \ E ) -> ( ( S ` C ) " ( R ` C ) ) = ( ( S ` C ) " ( ( S ` C ) " C ) ) ) |
13 |
1 2 3 4 5 6 7 8 9
|
ballotlemsf1o |
|- ( C e. ( O \ E ) -> ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) /\ `' ( S ` C ) = ( S ` C ) ) ) |
14 |
13
|
simprd |
|- ( C e. ( O \ E ) -> `' ( S ` C ) = ( S ` C ) ) |
15 |
14
|
imaeq1d |
|- ( C e. ( O \ E ) -> ( `' ( S ` C ) " ( ( S ` C ) " C ) ) = ( ( S ` C ) " ( ( S ` C ) " C ) ) ) |
16 |
13
|
simpld |
|- ( C e. ( O \ E ) -> ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) ) |
17 |
|
f1of1 |
|- ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) -> ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-> ( 1 ... ( M + N ) ) ) |
18 |
16 17
|
syl |
|- ( C e. ( O \ E ) -> ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-> ( 1 ... ( M + N ) ) ) |
19 |
|
eldifi |
|- ( C e. ( O \ E ) -> C e. O ) |
20 |
1 2 3
|
ballotlemelo |
|- ( C e. O <-> ( C C_ ( 1 ... ( M + N ) ) /\ ( # ` C ) = M ) ) |
21 |
20
|
simplbi |
|- ( C e. O -> C C_ ( 1 ... ( M + N ) ) ) |
22 |
19 21
|
syl |
|- ( C e. ( O \ E ) -> C C_ ( 1 ... ( M + N ) ) ) |
23 |
|
f1imacnv |
|- ( ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-> ( 1 ... ( M + N ) ) /\ C C_ ( 1 ... ( M + N ) ) ) -> ( `' ( S ` C ) " ( ( S ` C ) " C ) ) = C ) |
24 |
18 22 23
|
syl2anc |
|- ( C e. ( O \ E ) -> ( `' ( S ` C ) " ( ( S ` C ) " C ) ) = C ) |
25 |
12 15 24
|
3eqtr2d |
|- ( C e. ( O \ E ) -> ( ( S ` C ) " ( R ` C ) ) = C ) |