Metamath Proof Explorer


Theorem bamalip

Description: "Bamalip", one of the syllogisms of Aristotelian logic. All ph is ps , all ps is ch , and ph exist, therefore some ch is ph . In Aristotelian notation, AAI-4: PaM and MaS therefore SiP. Very similar to barbari . (Contributed by David A. Wheeler, 28-Aug-2016) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses bamalip.maj
|- A. x ( ph -> ps )
bamalip.min
|- A. x ( ps -> ch )
bamalip.e
|- E. x ph
Assertion bamalip
|- E. x ( ch /\ ph )

Proof

Step Hyp Ref Expression
1 bamalip.maj
 |-  A. x ( ph -> ps )
2 bamalip.min
 |-  A. x ( ps -> ch )
3 bamalip.e
 |-  E. x ph
4 2 1 3 barbari
 |-  E. x ( ph /\ ch )
5 exancom
 |-  ( E. x ( ph /\ ch ) <-> E. x ( ch /\ ph ) )
6 4 5 mpbi
 |-  E. x ( ch /\ ph )