Metamath Proof Explorer


Theorem barbarilem

Description: Lemma for barbari and the other Aristotelian syllogisms with existential assumption. (Contributed by BJ, 16-Sep-2022)

Ref Expression
Hypotheses barbarilem.min
|- E. x ph
barbarilem.maj
|- A. x ( ph -> ps )
Assertion barbarilem
|- E. x ( ph /\ ps )

Proof

Step Hyp Ref Expression
1 barbarilem.min
 |-  E. x ph
2 barbarilem.maj
 |-  A. x ( ph -> ps )
3 exintr
 |-  ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) )
4 2 1 3 mp2
 |-  E. x ( ph /\ ps )