| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( m = n -> ( 2 x. m ) = ( 2 x. n ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( m = n -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. n ) + 1 ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( m = n -> ( 1 / ( ( 2 x. m ) + 1 ) ) = ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 4 | 3 | cbvmptv |  |-  ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( m = n -> ( m ^ -u 2 ) = ( n ^ -u 2 ) ) | 
						
							| 6 | 5 | cbvmptv |  |-  ( m e. NN |-> ( m ^ -u 2 ) ) = ( n e. NN |-> ( n ^ -u 2 ) ) | 
						
							| 7 |  | seqeq3 |  |-  ( ( m e. NN |-> ( m ^ -u 2 ) ) = ( n e. NN |-> ( n ^ -u 2 ) ) -> seq 1 ( + , ( m e. NN |-> ( m ^ -u 2 ) ) ) = seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  seq 1 ( + , ( m e. NN |-> ( m ^ -u 2 ) ) ) = seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) | 
						
							| 9 |  | eqid |  |-  ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) = ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) | 
						
							| 10 |  | eqid |  |-  ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) ) = ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) oF x. ( ( NN X. { 1 } ) oF + ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) = ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) oF x. ( ( NN X. { 1 } ) oF + ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) | 
						
							| 12 | 4 8 9 10 11 | basellem9 |  |-  sum_ k e. NN ( k ^ -u 2 ) = ( ( _pi ^ 2 ) / 6 ) |