Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( m = n -> ( 2 x. m ) = ( 2 x. n ) ) |
2 |
1
|
oveq1d |
|- ( m = n -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. n ) + 1 ) ) |
3 |
2
|
oveq2d |
|- ( m = n -> ( 1 / ( ( 2 x. m ) + 1 ) ) = ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
4 |
3
|
cbvmptv |
|- ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
5 |
|
oveq1 |
|- ( m = n -> ( m ^ -u 2 ) = ( n ^ -u 2 ) ) |
6 |
5
|
cbvmptv |
|- ( m e. NN |-> ( m ^ -u 2 ) ) = ( n e. NN |-> ( n ^ -u 2 ) ) |
7 |
|
seqeq3 |
|- ( ( m e. NN |-> ( m ^ -u 2 ) ) = ( n e. NN |-> ( n ^ -u 2 ) ) -> seq 1 ( + , ( m e. NN |-> ( m ^ -u 2 ) ) ) = seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) ) |
8 |
6 7
|
ax-mp |
|- seq 1 ( + , ( m e. NN |-> ( m ^ -u 2 ) ) ) = seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) |
9 |
|
eqid |
|- ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) = ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) |
10 |
|
eqid |
|- ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) ) = ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) ) |
11 |
|
eqid |
|- ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) oF x. ( ( NN X. { 1 } ) oF + ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) = ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) oF x. ( ( NN X. { 1 } ) oF + ( m e. NN |-> ( 1 / ( ( 2 x. m ) + 1 ) ) ) ) ) |
12 |
4 8 9 10 11
|
basellem9 |
|- sum_ k e. NN ( k ^ -u 2 ) = ( ( _pi ^ 2 ) / 6 ) |