Step |
Hyp |
Ref |
Expression |
1 |
|
basel.n |
|- N = ( ( 2 x. M ) + 1 ) |
2 |
|
elfznn |
|- ( K e. ( 1 ... M ) -> K e. NN ) |
3 |
2
|
nnrpd |
|- ( K e. ( 1 ... M ) -> K e. RR+ ) |
4 |
|
pirp |
|- _pi e. RR+ |
5 |
|
rpmulcl |
|- ( ( K e. RR+ /\ _pi e. RR+ ) -> ( K x. _pi ) e. RR+ ) |
6 |
3 4 5
|
sylancl |
|- ( K e. ( 1 ... M ) -> ( K x. _pi ) e. RR+ ) |
7 |
|
2nn |
|- 2 e. NN |
8 |
|
nnmulcl |
|- ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) |
9 |
7 8
|
mpan |
|- ( M e. NN -> ( 2 x. M ) e. NN ) |
10 |
9
|
peano2nnd |
|- ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) |
11 |
1 10
|
eqeltrid |
|- ( M e. NN -> N e. NN ) |
12 |
11
|
nnrpd |
|- ( M e. NN -> N e. RR+ ) |
13 |
|
rpdivcl |
|- ( ( ( K x. _pi ) e. RR+ /\ N e. RR+ ) -> ( ( K x. _pi ) / N ) e. RR+ ) |
14 |
6 12 13
|
syl2anr |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) e. RR+ ) |
15 |
14
|
rpred |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) e. RR ) |
16 |
14
|
rpgt0d |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> 0 < ( ( K x. _pi ) / N ) ) |
17 |
2
|
adantl |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K e. NN ) |
18 |
|
nnmulcl |
|- ( ( K e. NN /\ 2 e. NN ) -> ( K x. 2 ) e. NN ) |
19 |
17 7 18
|
sylancl |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) e. NN ) |
20 |
19
|
nnred |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) e. RR ) |
21 |
9
|
adantr |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 x. M ) e. NN ) |
22 |
21
|
nnred |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 x. M ) e. RR ) |
23 |
11
|
adantr |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> N e. NN ) |
24 |
23
|
nnred |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> N e. RR ) |
25 |
1 24
|
eqeltrrid |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( 2 x. M ) + 1 ) e. RR ) |
26 |
17
|
nncnd |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K e. CC ) |
27 |
|
2cn |
|- 2 e. CC |
28 |
|
mulcom |
|- ( ( K e. CC /\ 2 e. CC ) -> ( K x. 2 ) = ( 2 x. K ) ) |
29 |
26 27 28
|
sylancl |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) = ( 2 x. K ) ) |
30 |
|
elfzle2 |
|- ( K e. ( 1 ... M ) -> K <_ M ) |
31 |
30
|
adantl |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K <_ M ) |
32 |
17
|
nnred |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K e. RR ) |
33 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
34 |
33
|
adantr |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> M e. RR ) |
35 |
|
2re |
|- 2 e. RR |
36 |
|
2pos |
|- 0 < 2 |
37 |
35 36
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
38 |
37
|
a1i |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 e. RR /\ 0 < 2 ) ) |
39 |
|
lemul2 |
|- ( ( K e. RR /\ M e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( K <_ M <-> ( 2 x. K ) <_ ( 2 x. M ) ) ) |
40 |
32 34 38 39
|
syl3anc |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K <_ M <-> ( 2 x. K ) <_ ( 2 x. M ) ) ) |
41 |
31 40
|
mpbid |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 x. K ) <_ ( 2 x. M ) ) |
42 |
29 41
|
eqbrtrd |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) <_ ( 2 x. M ) ) |
43 |
22
|
ltp1d |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 x. M ) < ( ( 2 x. M ) + 1 ) ) |
44 |
20 22 25 42 43
|
lelttrd |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) < ( ( 2 x. M ) + 1 ) ) |
45 |
44 1
|
breqtrrdi |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) < N ) |
46 |
19
|
nngt0d |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> 0 < ( K x. 2 ) ) |
47 |
23
|
nngt0d |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> 0 < N ) |
48 |
|
pire |
|- _pi e. RR |
49 |
|
remulcl |
|- ( ( K e. RR /\ _pi e. RR ) -> ( K x. _pi ) e. RR ) |
50 |
32 48 49
|
sylancl |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. _pi ) e. RR ) |
51 |
6
|
adantl |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. _pi ) e. RR+ ) |
52 |
51
|
rpgt0d |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> 0 < ( K x. _pi ) ) |
53 |
|
ltdiv2 |
|- ( ( ( ( K x. 2 ) e. RR /\ 0 < ( K x. 2 ) ) /\ ( N e. RR /\ 0 < N ) /\ ( ( K x. _pi ) e. RR /\ 0 < ( K x. _pi ) ) ) -> ( ( K x. 2 ) < N <-> ( ( K x. _pi ) / N ) < ( ( K x. _pi ) / ( K x. 2 ) ) ) ) |
54 |
20 46 24 47 50 52 53
|
syl222anc |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. 2 ) < N <-> ( ( K x. _pi ) / N ) < ( ( K x. _pi ) / ( K x. 2 ) ) ) ) |
55 |
45 54
|
mpbid |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) < ( ( K x. _pi ) / ( K x. 2 ) ) ) |
56 |
|
picn |
|- _pi e. CC |
57 |
56
|
a1i |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> _pi e. CC ) |
58 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
59 |
58
|
a1i |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
60 |
17
|
nnne0d |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K =/= 0 ) |
61 |
|
divcan5 |
|- ( ( _pi e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. _pi ) / ( K x. 2 ) ) = ( _pi / 2 ) ) |
62 |
57 59 26 60 61
|
syl112anc |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / ( K x. 2 ) ) = ( _pi / 2 ) ) |
63 |
55 62
|
breqtrd |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) < ( _pi / 2 ) ) |
64 |
|
0xr |
|- 0 e. RR* |
65 |
|
rehalfcl |
|- ( _pi e. RR -> ( _pi / 2 ) e. RR ) |
66 |
|
rexr |
|- ( ( _pi / 2 ) e. RR -> ( _pi / 2 ) e. RR* ) |
67 |
48 65 66
|
mp2b |
|- ( _pi / 2 ) e. RR* |
68 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( ( K x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( ( K x. _pi ) / N ) e. RR /\ 0 < ( ( K x. _pi ) / N ) /\ ( ( K x. _pi ) / N ) < ( _pi / 2 ) ) ) ) |
69 |
64 67 68
|
mp2an |
|- ( ( ( K x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( ( K x. _pi ) / N ) e. RR /\ 0 < ( ( K x. _pi ) / N ) /\ ( ( K x. _pi ) / N ) < ( _pi / 2 ) ) ) |
70 |
15 16 63 69
|
syl3anbrc |
|- ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) |