| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basel.n |
|- N = ( ( 2 x. M ) + 1 ) |
| 2 |
|
basel.p |
|- P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) |
| 3 |
|
ssidd |
|- ( M e. NN -> CC C_ CC ) |
| 4 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
| 5 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
| 6 |
|
oveq2 |
|- ( n = j -> ( 2 x. n ) = ( 2 x. j ) ) |
| 7 |
6
|
oveq2d |
|- ( n = j -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. j ) ) ) |
| 8 |
|
oveq2 |
|- ( n = j -> ( M - n ) = ( M - j ) ) |
| 9 |
8
|
oveq2d |
|- ( n = j -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - j ) ) ) |
| 10 |
7 9
|
oveq12d |
|- ( n = j -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) |
| 11 |
|
eqid |
|- ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) |
| 12 |
|
ovex |
|- ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) e. _V |
| 13 |
10 11 12
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) |
| 14 |
5 13
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) |
| 15 |
14
|
adantl |
|- ( ( M e. NN /\ j e. ( 0 ... M ) ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) |
| 16 |
|
2nn |
|- 2 e. NN |
| 17 |
|
nnmulcl |
|- ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) |
| 18 |
16 17
|
mpan |
|- ( M e. NN -> ( 2 x. M ) e. NN ) |
| 19 |
18
|
peano2nnd |
|- ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) |
| 20 |
1 19
|
eqeltrid |
|- ( M e. NN -> N e. NN ) |
| 21 |
20
|
nnnn0d |
|- ( M e. NN -> N e. NN0 ) |
| 22 |
|
2z |
|- 2 e. ZZ |
| 23 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
| 24 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) |
| 25 |
22 23 24
|
sylancr |
|- ( n e. NN0 -> ( 2 x. n ) e. ZZ ) |
| 26 |
|
bccl |
|- ( ( N e. NN0 /\ ( 2 x. n ) e. ZZ ) -> ( N _C ( 2 x. n ) ) e. NN0 ) |
| 27 |
21 25 26
|
syl2an |
|- ( ( M e. NN /\ n e. NN0 ) -> ( N _C ( 2 x. n ) ) e. NN0 ) |
| 28 |
27
|
nn0cnd |
|- ( ( M e. NN /\ n e. NN0 ) -> ( N _C ( 2 x. n ) ) e. CC ) |
| 29 |
|
neg1cn |
|- -u 1 e. CC |
| 30 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 31 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
| 32 |
|
zsubcl |
|- ( ( M e. ZZ /\ n e. ZZ ) -> ( M - n ) e. ZZ ) |
| 33 |
31 23 32
|
syl2an |
|- ( ( M e. NN /\ n e. NN0 ) -> ( M - n ) e. ZZ ) |
| 34 |
|
expclz |
|- ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ ( M - n ) e. ZZ ) -> ( -u 1 ^ ( M - n ) ) e. CC ) |
| 35 |
29 30 33 34
|
mp3an12i |
|- ( ( M e. NN /\ n e. NN0 ) -> ( -u 1 ^ ( M - n ) ) e. CC ) |
| 36 |
28 35
|
mulcld |
|- ( ( M e. NN /\ n e. NN0 ) -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) e. CC ) |
| 37 |
36
|
fmpttd |
|- ( M e. NN -> ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) : NN0 --> CC ) |
| 38 |
|
ffvelcdm |
|- ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) : NN0 --> CC /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) e. CC ) |
| 39 |
37 5 38
|
syl2an |
|- ( ( M e. NN /\ j e. ( 0 ... M ) ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) e. CC ) |
| 40 |
15 39
|
eqeltrrd |
|- ( ( M e. NN /\ j e. ( 0 ... M ) ) -> ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) e. CC ) |
| 41 |
3 4 40
|
elplyd |
|- ( M e. NN -> ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) e. ( Poly ` CC ) ) |
| 42 |
2 41
|
eqeltrid |
|- ( M e. NN -> P e. ( Poly ` CC ) ) |
| 43 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 44 |
|
nn0re |
|- ( j e. NN0 -> j e. RR ) |
| 45 |
|
ltnle |
|- ( ( M e. RR /\ j e. RR ) -> ( M < j <-> -. j <_ M ) ) |
| 46 |
43 44 45
|
syl2an |
|- ( ( M e. NN /\ j e. NN0 ) -> ( M < j <-> -. j <_ M ) ) |
| 47 |
13
|
ad2antlr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) |
| 48 |
21
|
ad2antrr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> N e. NN0 ) |
| 49 |
|
nn0z |
|- ( j e. NN0 -> j e. ZZ ) |
| 50 |
49
|
ad2antlr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> j e. ZZ ) |
| 51 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ j e. ZZ ) -> ( 2 x. j ) e. ZZ ) |
| 52 |
22 50 51
|
sylancr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. j ) e. ZZ ) |
| 53 |
|
ax-1cn |
|- 1 e. CC |
| 54 |
53
|
2timesi |
|- ( 2 x. 1 ) = ( 1 + 1 ) |
| 55 |
54
|
oveq2i |
|- ( ( 2 x. M ) + ( 2 x. 1 ) ) = ( ( 2 x. M ) + ( 1 + 1 ) ) |
| 56 |
|
2cnd |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> 2 e. CC ) |
| 57 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
| 58 |
57
|
ad2antrr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> M e. CC ) |
| 59 |
53
|
a1i |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> 1 e. CC ) |
| 60 |
56 58 59
|
adddid |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. ( M + 1 ) ) = ( ( 2 x. M ) + ( 2 x. 1 ) ) ) |
| 61 |
1
|
oveq1i |
|- ( N + 1 ) = ( ( ( 2 x. M ) + 1 ) + 1 ) |
| 62 |
18
|
ad2antrr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. M ) e. NN ) |
| 63 |
62
|
nncnd |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. M ) e. CC ) |
| 64 |
63 59 59
|
addassd |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( ( 2 x. M ) + 1 ) + 1 ) = ( ( 2 x. M ) + ( 1 + 1 ) ) ) |
| 65 |
61 64
|
eqtrid |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( N + 1 ) = ( ( 2 x. M ) + ( 1 + 1 ) ) ) |
| 66 |
55 60 65
|
3eqtr4a |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. ( M + 1 ) ) = ( N + 1 ) ) |
| 67 |
|
zltp1le |
|- ( ( M e. ZZ /\ j e. ZZ ) -> ( M < j <-> ( M + 1 ) <_ j ) ) |
| 68 |
31 49 67
|
syl2an |
|- ( ( M e. NN /\ j e. NN0 ) -> ( M < j <-> ( M + 1 ) <_ j ) ) |
| 69 |
68
|
biimpa |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( M + 1 ) <_ j ) |
| 70 |
43
|
ad2antrr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> M e. RR ) |
| 71 |
|
peano2re |
|- ( M e. RR -> ( M + 1 ) e. RR ) |
| 72 |
70 71
|
syl |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( M + 1 ) e. RR ) |
| 73 |
44
|
ad2antlr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> j e. RR ) |
| 74 |
|
2re |
|- 2 e. RR |
| 75 |
|
2pos |
|- 0 < 2 |
| 76 |
74 75
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 77 |
76
|
a1i |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 e. RR /\ 0 < 2 ) ) |
| 78 |
|
lemul2 |
|- ( ( ( M + 1 ) e. RR /\ j e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( M + 1 ) <_ j <-> ( 2 x. ( M + 1 ) ) <_ ( 2 x. j ) ) ) |
| 79 |
72 73 77 78
|
syl3anc |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( M + 1 ) <_ j <-> ( 2 x. ( M + 1 ) ) <_ ( 2 x. j ) ) ) |
| 80 |
69 79
|
mpbid |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. ( M + 1 ) ) <_ ( 2 x. j ) ) |
| 81 |
66 80
|
eqbrtrrd |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( N + 1 ) <_ ( 2 x. j ) ) |
| 82 |
20
|
nnzd |
|- ( M e. NN -> N e. ZZ ) |
| 83 |
82
|
ad2antrr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> N e. ZZ ) |
| 84 |
|
zltp1le |
|- ( ( N e. ZZ /\ ( 2 x. j ) e. ZZ ) -> ( N < ( 2 x. j ) <-> ( N + 1 ) <_ ( 2 x. j ) ) ) |
| 85 |
83 52 84
|
syl2anc |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( N < ( 2 x. j ) <-> ( N + 1 ) <_ ( 2 x. j ) ) ) |
| 86 |
81 85
|
mpbird |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> N < ( 2 x. j ) ) |
| 87 |
86
|
olcd |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( 2 x. j ) < 0 \/ N < ( 2 x. j ) ) ) |
| 88 |
|
bcval4 |
|- ( ( N e. NN0 /\ ( 2 x. j ) e. ZZ /\ ( ( 2 x. j ) < 0 \/ N < ( 2 x. j ) ) ) -> ( N _C ( 2 x. j ) ) = 0 ) |
| 89 |
48 52 87 88
|
syl3anc |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( N _C ( 2 x. j ) ) = 0 ) |
| 90 |
89
|
oveq1d |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) = ( 0 x. ( -u 1 ^ ( M - j ) ) ) ) |
| 91 |
|
zsubcl |
|- ( ( M e. ZZ /\ j e. ZZ ) -> ( M - j ) e. ZZ ) |
| 92 |
31 49 91
|
syl2an |
|- ( ( M e. NN /\ j e. NN0 ) -> ( M - j ) e. ZZ ) |
| 93 |
|
expclz |
|- ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ ( M - j ) e. ZZ ) -> ( -u 1 ^ ( M - j ) ) e. CC ) |
| 94 |
29 30 92 93
|
mp3an12i |
|- ( ( M e. NN /\ j e. NN0 ) -> ( -u 1 ^ ( M - j ) ) e. CC ) |
| 95 |
94
|
adantr |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( -u 1 ^ ( M - j ) ) e. CC ) |
| 96 |
95
|
mul02d |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 0 x. ( -u 1 ^ ( M - j ) ) ) = 0 ) |
| 97 |
47 90 96
|
3eqtrd |
|- ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = 0 ) |
| 98 |
97
|
ex |
|- ( ( M e. NN /\ j e. NN0 ) -> ( M < j -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = 0 ) ) |
| 99 |
46 98
|
sylbird |
|- ( ( M e. NN /\ j e. NN0 ) -> ( -. j <_ M -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = 0 ) ) |
| 100 |
99
|
necon1ad |
|- ( ( M e. NN /\ j e. NN0 ) -> ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) =/= 0 -> j <_ M ) ) |
| 101 |
100
|
ralrimiva |
|- ( M e. NN -> A. j e. NN0 ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) =/= 0 -> j <_ M ) ) |
| 102 |
|
plyco0 |
|- ( ( M e. NN0 /\ ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) : NN0 --> CC ) -> ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. j e. NN0 ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) =/= 0 -> j <_ M ) ) ) |
| 103 |
4 37 102
|
syl2anc |
|- ( M e. NN -> ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. j e. NN0 ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) =/= 0 -> j <_ M ) ) ) |
| 104 |
101 103
|
mpbird |
|- ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) |
| 105 |
14
|
oveq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) = ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) |
| 106 |
105
|
sumeq2i |
|- sum_ j e. ( 0 ... M ) ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) = sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) |
| 107 |
106
|
mpteq2i |
|- ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) ) = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) |
| 108 |
2 107
|
eqtr4i |
|- P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) ) |
| 109 |
108
|
a1i |
|- ( M e. NN -> P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) ) ) |
| 110 |
|
oveq2 |
|- ( n = M -> ( 2 x. n ) = ( 2 x. M ) ) |
| 111 |
110
|
oveq2d |
|- ( n = M -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. M ) ) ) |
| 112 |
|
oveq2 |
|- ( n = M -> ( M - n ) = ( M - M ) ) |
| 113 |
112
|
oveq2d |
|- ( n = M -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - M ) ) ) |
| 114 |
111 113
|
oveq12d |
|- ( n = M -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
| 115 |
|
ovex |
|- ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) e. _V |
| 116 |
114 11 115
|
fvmpt |
|- ( M e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
| 117 |
4 116
|
syl |
|- ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
| 118 |
57
|
subidd |
|- ( M e. NN -> ( M - M ) = 0 ) |
| 119 |
118
|
oveq2d |
|- ( M e. NN -> ( -u 1 ^ ( M - M ) ) = ( -u 1 ^ 0 ) ) |
| 120 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
| 121 |
29 120
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
| 122 |
119 121
|
eqtrdi |
|- ( M e. NN -> ( -u 1 ^ ( M - M ) ) = 1 ) |
| 123 |
122
|
oveq2d |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) = ( ( N _C ( 2 x. M ) ) x. 1 ) ) |
| 124 |
18
|
nnred |
|- ( M e. NN -> ( 2 x. M ) e. RR ) |
| 125 |
124
|
lep1d |
|- ( M e. NN -> ( 2 x. M ) <_ ( ( 2 x. M ) + 1 ) ) |
| 126 |
125 1
|
breqtrrdi |
|- ( M e. NN -> ( 2 x. M ) <_ N ) |
| 127 |
18
|
nnnn0d |
|- ( M e. NN -> ( 2 x. M ) e. NN0 ) |
| 128 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 129 |
127 128
|
eleqtrdi |
|- ( M e. NN -> ( 2 x. M ) e. ( ZZ>= ` 0 ) ) |
| 130 |
|
elfz5 |
|- ( ( ( 2 x. M ) e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( ( 2 x. M ) e. ( 0 ... N ) <-> ( 2 x. M ) <_ N ) ) |
| 131 |
129 82 130
|
syl2anc |
|- ( M e. NN -> ( ( 2 x. M ) e. ( 0 ... N ) <-> ( 2 x. M ) <_ N ) ) |
| 132 |
126 131
|
mpbird |
|- ( M e. NN -> ( 2 x. M ) e. ( 0 ... N ) ) |
| 133 |
|
bccl2 |
|- ( ( 2 x. M ) e. ( 0 ... N ) -> ( N _C ( 2 x. M ) ) e. NN ) |
| 134 |
132 133
|
syl |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) e. NN ) |
| 135 |
134
|
nncnd |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) e. CC ) |
| 136 |
135
|
mulridd |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. 1 ) = ( N _C ( 2 x. M ) ) ) |
| 137 |
117 123 136
|
3eqtrd |
|- ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( N _C ( 2 x. M ) ) ) |
| 138 |
134
|
nnne0d |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) =/= 0 ) |
| 139 |
137 138
|
eqnetrd |
|- ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) =/= 0 ) |
| 140 |
42 4 37 104 109 139
|
dgreq |
|- ( M e. NN -> ( deg ` P ) = M ) |
| 141 |
42 4 37 104 109
|
coeeq |
|- ( M e. NN -> ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) |
| 142 |
42 140 141
|
3jca |
|- ( M e. NN -> ( P e. ( Poly ` CC ) /\ ( deg ` P ) = M /\ ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) ) |