Step |
Hyp |
Ref |
Expression |
1 |
|
basel.n |
|- N = ( ( 2 x. M ) + 1 ) |
2 |
|
basel.p |
|- P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) |
3 |
|
basel.t |
|- T = ( n e. ( 1 ... M ) |-> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) |
4 |
1
|
basellem1 |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( n x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) |
5 |
|
tanrpcl |
|- ( ( ( n x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` ( ( n x. _pi ) / N ) ) e. RR+ ) |
6 |
4 5
|
syl |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( tan ` ( ( n x. _pi ) / N ) ) e. RR+ ) |
7 |
|
2z |
|- 2 e. ZZ |
8 |
|
znegcl |
|- ( 2 e. ZZ -> -u 2 e. ZZ ) |
9 |
7 8
|
ax-mp |
|- -u 2 e. ZZ |
10 |
|
rpexpcl |
|- ( ( ( tan ` ( ( n x. _pi ) / N ) ) e. RR+ /\ -u 2 e. ZZ ) -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. RR+ ) |
11 |
6 9 10
|
sylancl |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. RR+ ) |
12 |
11
|
rpcnd |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. CC ) |
13 |
1 2
|
basellem3 |
|- ( ( M e. NN /\ ( ( n x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) -> ( P ` ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( sin ` ( N x. ( ( n x. _pi ) / N ) ) ) / ( ( sin ` ( ( n x. _pi ) / N ) ) ^ N ) ) ) |
14 |
4 13
|
syldan |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( P ` ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( sin ` ( N x. ( ( n x. _pi ) / N ) ) ) / ( ( sin ` ( ( n x. _pi ) / N ) ) ^ N ) ) ) |
15 |
|
elfzelz |
|- ( n e. ( 1 ... M ) -> n e. ZZ ) |
16 |
15
|
adantl |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> n e. ZZ ) |
17 |
16
|
zred |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> n e. RR ) |
18 |
|
pire |
|- _pi e. RR |
19 |
|
remulcl |
|- ( ( n e. RR /\ _pi e. RR ) -> ( n x. _pi ) e. RR ) |
20 |
17 18 19
|
sylancl |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( n x. _pi ) e. RR ) |
21 |
20
|
recnd |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( n x. _pi ) e. CC ) |
22 |
|
2nn |
|- 2 e. NN |
23 |
|
nnmulcl |
|- ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) |
24 |
22 23
|
mpan |
|- ( M e. NN -> ( 2 x. M ) e. NN ) |
25 |
24
|
peano2nnd |
|- ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) |
26 |
1 25
|
eqeltrid |
|- ( M e. NN -> N e. NN ) |
27 |
26
|
adantr |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> N e. NN ) |
28 |
27
|
nncnd |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> N e. CC ) |
29 |
27
|
nnne0d |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> N =/= 0 ) |
30 |
21 28 29
|
divcan2d |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( N x. ( ( n x. _pi ) / N ) ) = ( n x. _pi ) ) |
31 |
30
|
fveq2d |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( sin ` ( N x. ( ( n x. _pi ) / N ) ) ) = ( sin ` ( n x. _pi ) ) ) |
32 |
|
sinkpi |
|- ( n e. ZZ -> ( sin ` ( n x. _pi ) ) = 0 ) |
33 |
16 32
|
syl |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( sin ` ( n x. _pi ) ) = 0 ) |
34 |
31 33
|
eqtrd |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( sin ` ( N x. ( ( n x. _pi ) / N ) ) ) = 0 ) |
35 |
34
|
oveq1d |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( sin ` ( N x. ( ( n x. _pi ) / N ) ) ) / ( ( sin ` ( ( n x. _pi ) / N ) ) ^ N ) ) = ( 0 / ( ( sin ` ( ( n x. _pi ) / N ) ) ^ N ) ) ) |
36 |
20 27
|
nndivred |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( n x. _pi ) / N ) e. RR ) |
37 |
36
|
resincld |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( sin ` ( ( n x. _pi ) / N ) ) e. RR ) |
38 |
37
|
recnd |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( sin ` ( ( n x. _pi ) / N ) ) e. CC ) |
39 |
27
|
nnnn0d |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> N e. NN0 ) |
40 |
38 39
|
expcld |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( sin ` ( ( n x. _pi ) / N ) ) ^ N ) e. CC ) |
41 |
|
sincosq1sgn |
|- ( ( ( n x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` ( ( n x. _pi ) / N ) ) /\ 0 < ( cos ` ( ( n x. _pi ) / N ) ) ) ) |
42 |
4 41
|
syl |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( 0 < ( sin ` ( ( n x. _pi ) / N ) ) /\ 0 < ( cos ` ( ( n x. _pi ) / N ) ) ) ) |
43 |
42
|
simpld |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> 0 < ( sin ` ( ( n x. _pi ) / N ) ) ) |
44 |
43
|
gt0ne0d |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( sin ` ( ( n x. _pi ) / N ) ) =/= 0 ) |
45 |
27
|
nnzd |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> N e. ZZ ) |
46 |
38 44 45
|
expne0d |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( sin ` ( ( n x. _pi ) / N ) ) ^ N ) =/= 0 ) |
47 |
40 46
|
div0d |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( 0 / ( ( sin ` ( ( n x. _pi ) / N ) ) ^ N ) ) = 0 ) |
48 |
14 35 47
|
3eqtrd |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( P ` ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) = 0 ) |
49 |
1 2
|
basellem2 |
|- ( M e. NN -> ( P e. ( Poly ` CC ) /\ ( deg ` P ) = M /\ ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) ) |
50 |
49
|
simp1d |
|- ( M e. NN -> P e. ( Poly ` CC ) ) |
51 |
|
plyf |
|- ( P e. ( Poly ` CC ) -> P : CC --> CC ) |
52 |
|
ffn |
|- ( P : CC --> CC -> P Fn CC ) |
53 |
50 51 52
|
3syl |
|- ( M e. NN -> P Fn CC ) |
54 |
53
|
adantr |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> P Fn CC ) |
55 |
|
fniniseg |
|- ( P Fn CC -> ( ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. ( `' P " { 0 } ) <-> ( ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. CC /\ ( P ` ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) = 0 ) ) ) |
56 |
54 55
|
syl |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. ( `' P " { 0 } ) <-> ( ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. CC /\ ( P ` ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) = 0 ) ) ) |
57 |
12 48 56
|
mpbir2and |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. ( `' P " { 0 } ) ) |
58 |
57 3
|
fmptd |
|- ( M e. NN -> T : ( 1 ... M ) --> ( `' P " { 0 } ) ) |
59 |
|
fveq2 |
|- ( k = m -> ( T ` k ) = ( T ` m ) ) |
60 |
|
fveq2 |
|- ( k = x -> ( T ` k ) = ( T ` x ) ) |
61 |
|
fveq2 |
|- ( k = y -> ( T ` k ) = ( T ` y ) ) |
62 |
15
|
zred |
|- ( n e. ( 1 ... M ) -> n e. RR ) |
63 |
62
|
ssriv |
|- ( 1 ... M ) C_ RR |
64 |
11
|
rpred |
|- ( ( M e. NN /\ n e. ( 1 ... M ) ) -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) e. RR ) |
65 |
64 3
|
fmptd |
|- ( M e. NN -> T : ( 1 ... M ) --> RR ) |
66 |
65
|
ffvelrnda |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( T ` k ) e. RR ) |
67 |
|
simplr |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> k < m ) |
68 |
63
|
sseli |
|- ( k e. ( 1 ... M ) -> k e. RR ) |
69 |
68
|
ad2antrl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> k e. RR ) |
70 |
63
|
sseli |
|- ( m e. ( 1 ... M ) -> m e. RR ) |
71 |
70
|
ad2antll |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> m e. RR ) |
72 |
18
|
a1i |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> _pi e. RR ) |
73 |
|
pipos |
|- 0 < _pi |
74 |
73
|
a1i |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> 0 < _pi ) |
75 |
|
ltmul1 |
|- ( ( k e. RR /\ m e. RR /\ ( _pi e. RR /\ 0 < _pi ) ) -> ( k < m <-> ( k x. _pi ) < ( m x. _pi ) ) ) |
76 |
69 71 72 74 75
|
syl112anc |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( k < m <-> ( k x. _pi ) < ( m x. _pi ) ) ) |
77 |
67 76
|
mpbid |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( k x. _pi ) < ( m x. _pi ) ) |
78 |
|
remulcl |
|- ( ( k e. RR /\ _pi e. RR ) -> ( k x. _pi ) e. RR ) |
79 |
69 18 78
|
sylancl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( k x. _pi ) e. RR ) |
80 |
|
remulcl |
|- ( ( m e. RR /\ _pi e. RR ) -> ( m x. _pi ) e. RR ) |
81 |
71 18 80
|
sylancl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( m x. _pi ) e. RR ) |
82 |
26
|
ad2antrr |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> N e. NN ) |
83 |
82
|
nnred |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> N e. RR ) |
84 |
82
|
nngt0d |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> 0 < N ) |
85 |
|
ltdiv1 |
|- ( ( ( k x. _pi ) e. RR /\ ( m x. _pi ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( k x. _pi ) < ( m x. _pi ) <-> ( ( k x. _pi ) / N ) < ( ( m x. _pi ) / N ) ) ) |
86 |
79 81 83 84 85
|
syl112anc |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( k x. _pi ) < ( m x. _pi ) <-> ( ( k x. _pi ) / N ) < ( ( m x. _pi ) / N ) ) ) |
87 |
77 86
|
mpbid |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( k x. _pi ) / N ) < ( ( m x. _pi ) / N ) ) |
88 |
|
neghalfpirx |
|- -u ( _pi / 2 ) e. RR* |
89 |
|
pirp |
|- _pi e. RR+ |
90 |
|
rphalfcl |
|- ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) |
91 |
|
rpge0 |
|- ( ( _pi / 2 ) e. RR+ -> 0 <_ ( _pi / 2 ) ) |
92 |
89 90 91
|
mp2b |
|- 0 <_ ( _pi / 2 ) |
93 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
94 |
|
le0neg2 |
|- ( ( _pi / 2 ) e. RR -> ( 0 <_ ( _pi / 2 ) <-> -u ( _pi / 2 ) <_ 0 ) ) |
95 |
93 94
|
ax-mp |
|- ( 0 <_ ( _pi / 2 ) <-> -u ( _pi / 2 ) <_ 0 ) |
96 |
92 95
|
mpbi |
|- -u ( _pi / 2 ) <_ 0 |
97 |
|
iooss1 |
|- ( ( -u ( _pi / 2 ) e. RR* /\ -u ( _pi / 2 ) <_ 0 ) -> ( 0 (,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
98 |
88 96 97
|
mp2an |
|- ( 0 (,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
99 |
1
|
basellem1 |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) |
100 |
99
|
ad2ant2r |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) |
101 |
98 100
|
sselid |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( k x. _pi ) / N ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
102 |
1
|
basellem1 |
|- ( ( M e. NN /\ m e. ( 1 ... M ) ) -> ( ( m x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) |
103 |
102
|
ad2ant2rl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( m x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) |
104 |
98 103
|
sselid |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( m x. _pi ) / N ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
105 |
|
tanord |
|- ( ( ( ( k x. _pi ) / N ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ ( ( m x. _pi ) / N ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( k x. _pi ) / N ) < ( ( m x. _pi ) / N ) <-> ( tan ` ( ( k x. _pi ) / N ) ) < ( tan ` ( ( m x. _pi ) / N ) ) ) ) |
106 |
101 104 105
|
syl2anc |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( ( k x. _pi ) / N ) < ( ( m x. _pi ) / N ) <-> ( tan ` ( ( k x. _pi ) / N ) ) < ( tan ` ( ( m x. _pi ) / N ) ) ) ) |
107 |
87 106
|
mpbid |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) < ( tan ` ( ( m x. _pi ) / N ) ) ) |
108 |
|
tanrpcl |
|- ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ ) |
109 |
100 108
|
syl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ ) |
110 |
|
tanrpcl |
|- ( ( ( m x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` ( ( m x. _pi ) / N ) ) e. RR+ ) |
111 |
103 110
|
syl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( tan ` ( ( m x. _pi ) / N ) ) e. RR+ ) |
112 |
|
rprege0 |
|- ( ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ -> ( ( tan ` ( ( k x. _pi ) / N ) ) e. RR /\ 0 <_ ( tan ` ( ( k x. _pi ) / N ) ) ) ) |
113 |
|
rprege0 |
|- ( ( tan ` ( ( m x. _pi ) / N ) ) e. RR+ -> ( ( tan ` ( ( m x. _pi ) / N ) ) e. RR /\ 0 <_ ( tan ` ( ( m x. _pi ) / N ) ) ) ) |
114 |
|
lt2sq |
|- ( ( ( ( tan ` ( ( k x. _pi ) / N ) ) e. RR /\ 0 <_ ( tan ` ( ( k x. _pi ) / N ) ) ) /\ ( ( tan ` ( ( m x. _pi ) / N ) ) e. RR /\ 0 <_ ( tan ` ( ( m x. _pi ) / N ) ) ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) < ( tan ` ( ( m x. _pi ) / N ) ) <-> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) < ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) ) |
115 |
112 113 114
|
syl2an |
|- ( ( ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ /\ ( tan ` ( ( m x. _pi ) / N ) ) e. RR+ ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) < ( tan ` ( ( m x. _pi ) / N ) ) <-> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) < ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) ) |
116 |
109 111 115
|
syl2anc |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) < ( tan ` ( ( m x. _pi ) / N ) ) <-> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) < ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) ) |
117 |
107 116
|
mpbid |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) < ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) |
118 |
|
rpexpcl |
|- ( ( ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) |
119 |
109 7 118
|
sylancl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) |
120 |
|
rpexpcl |
|- ( ( ( tan ` ( ( m x. _pi ) / N ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) e. RR+ ) |
121 |
111 7 120
|
sylancl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) e. RR+ ) |
122 |
119 121
|
ltrecd |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) < ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) <-> ( 1 / ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) < ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
123 |
117 122
|
mpbid |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( 1 / ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) < ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
124 |
|
oveq1 |
|- ( n = m -> ( n x. _pi ) = ( m x. _pi ) ) |
125 |
124
|
fvoveq1d |
|- ( n = m -> ( tan ` ( ( n x. _pi ) / N ) ) = ( tan ` ( ( m x. _pi ) / N ) ) ) |
126 |
125
|
oveq1d |
|- ( n = m -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) = ( ( tan ` ( ( m x. _pi ) / N ) ) ^ -u 2 ) ) |
127 |
|
ovex |
|- ( ( tan ` ( ( m x. _pi ) / N ) ) ^ -u 2 ) e. _V |
128 |
126 3 127
|
fvmpt |
|- ( m e. ( 1 ... M ) -> ( T ` m ) = ( ( tan ` ( ( m x. _pi ) / N ) ) ^ -u 2 ) ) |
129 |
128
|
ad2antll |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( T ` m ) = ( ( tan ` ( ( m x. _pi ) / N ) ) ^ -u 2 ) ) |
130 |
111
|
rpcnd |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( tan ` ( ( m x. _pi ) / N ) ) e. CC ) |
131 |
|
2nn0 |
|- 2 e. NN0 |
132 |
|
expneg |
|- ( ( ( tan ` ( ( m x. _pi ) / N ) ) e. CC /\ 2 e. NN0 ) -> ( ( tan ` ( ( m x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) ) |
133 |
130 131 132
|
sylancl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( tan ` ( ( m x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) ) |
134 |
129 133
|
eqtrd |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( T ` m ) = ( 1 / ( ( tan ` ( ( m x. _pi ) / N ) ) ^ 2 ) ) ) |
135 |
|
oveq1 |
|- ( n = k -> ( n x. _pi ) = ( k x. _pi ) ) |
136 |
135
|
fvoveq1d |
|- ( n = k -> ( tan ` ( ( n x. _pi ) / N ) ) = ( tan ` ( ( k x. _pi ) / N ) ) ) |
137 |
136
|
oveq1d |
|- ( n = k -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
138 |
|
ovex |
|- ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. _V |
139 |
137 3 138
|
fvmpt |
|- ( k e. ( 1 ... M ) -> ( T ` k ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
140 |
139
|
ad2antrl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( T ` k ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
141 |
109
|
rpcnd |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. CC ) |
142 |
|
expneg |
|- ( ( ( tan ` ( ( k x. _pi ) / N ) ) e. CC /\ 2 e. NN0 ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
143 |
141 131 142
|
sylancl |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
144 |
140 143
|
eqtrd |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( T ` k ) = ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
145 |
123 134 144
|
3brtr4d |
|- ( ( ( M e. NN /\ k < m ) /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( T ` m ) < ( T ` k ) ) |
146 |
145
|
an32s |
|- ( ( ( M e. NN /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) /\ k < m ) -> ( T ` m ) < ( T ` k ) ) |
147 |
146
|
ex |
|- ( ( M e. NN /\ ( k e. ( 1 ... M ) /\ m e. ( 1 ... M ) ) ) -> ( k < m -> ( T ` m ) < ( T ` k ) ) ) |
148 |
59 60 61 63 66 147
|
eqord2 |
|- ( ( M e. NN /\ ( x e. ( 1 ... M ) /\ y e. ( 1 ... M ) ) ) -> ( x = y <-> ( T ` x ) = ( T ` y ) ) ) |
149 |
148
|
biimprd |
|- ( ( M e. NN /\ ( x e. ( 1 ... M ) /\ y e. ( 1 ... M ) ) ) -> ( ( T ` x ) = ( T ` y ) -> x = y ) ) |
150 |
149
|
ralrimivva |
|- ( M e. NN -> A. x e. ( 1 ... M ) A. y e. ( 1 ... M ) ( ( T ` x ) = ( T ` y ) -> x = y ) ) |
151 |
|
dff13 |
|- ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } ) <-> ( T : ( 1 ... M ) --> ( `' P " { 0 } ) /\ A. x e. ( 1 ... M ) A. y e. ( 1 ... M ) ( ( T ` x ) = ( T ` y ) -> x = y ) ) ) |
152 |
58 150 151
|
sylanbrc |
|- ( M e. NN -> T : ( 1 ... M ) -1-1-> ( `' P " { 0 } ) ) |
153 |
49
|
simp2d |
|- ( M e. NN -> ( deg ` P ) = M ) |
154 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
155 |
153 154
|
eqnetrd |
|- ( M e. NN -> ( deg ` P ) =/= 0 ) |
156 |
|
fveq2 |
|- ( P = 0p -> ( deg ` P ) = ( deg ` 0p ) ) |
157 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
158 |
156 157
|
eqtrdi |
|- ( P = 0p -> ( deg ` P ) = 0 ) |
159 |
158
|
necon3i |
|- ( ( deg ` P ) =/= 0 -> P =/= 0p ) |
160 |
155 159
|
syl |
|- ( M e. NN -> P =/= 0p ) |
161 |
|
eqid |
|- ( `' P " { 0 } ) = ( `' P " { 0 } ) |
162 |
161
|
fta1 |
|- ( ( P e. ( Poly ` CC ) /\ P =/= 0p ) -> ( ( `' P " { 0 } ) e. Fin /\ ( # ` ( `' P " { 0 } ) ) <_ ( deg ` P ) ) ) |
163 |
50 160 162
|
syl2anc |
|- ( M e. NN -> ( ( `' P " { 0 } ) e. Fin /\ ( # ` ( `' P " { 0 } ) ) <_ ( deg ` P ) ) ) |
164 |
163
|
simpld |
|- ( M e. NN -> ( `' P " { 0 } ) e. Fin ) |
165 |
|
f1domg |
|- ( ( `' P " { 0 } ) e. Fin -> ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } ) -> ( 1 ... M ) ~<_ ( `' P " { 0 } ) ) ) |
166 |
164 152 165
|
sylc |
|- ( M e. NN -> ( 1 ... M ) ~<_ ( `' P " { 0 } ) ) |
167 |
163
|
simprd |
|- ( M e. NN -> ( # ` ( `' P " { 0 } ) ) <_ ( deg ` P ) ) |
168 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
169 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
170 |
168 169
|
syl |
|- ( M e. NN -> ( # ` ( 1 ... M ) ) = M ) |
171 |
153 170
|
eqtr4d |
|- ( M e. NN -> ( deg ` P ) = ( # ` ( 1 ... M ) ) ) |
172 |
167 171
|
breqtrd |
|- ( M e. NN -> ( # ` ( `' P " { 0 } ) ) <_ ( # ` ( 1 ... M ) ) ) |
173 |
|
fzfid |
|- ( M e. NN -> ( 1 ... M ) e. Fin ) |
174 |
|
hashdom |
|- ( ( ( `' P " { 0 } ) e. Fin /\ ( 1 ... M ) e. Fin ) -> ( ( # ` ( `' P " { 0 } ) ) <_ ( # ` ( 1 ... M ) ) <-> ( `' P " { 0 } ) ~<_ ( 1 ... M ) ) ) |
175 |
164 173 174
|
syl2anc |
|- ( M e. NN -> ( ( # ` ( `' P " { 0 } ) ) <_ ( # ` ( 1 ... M ) ) <-> ( `' P " { 0 } ) ~<_ ( 1 ... M ) ) ) |
176 |
172 175
|
mpbid |
|- ( M e. NN -> ( `' P " { 0 } ) ~<_ ( 1 ... M ) ) |
177 |
|
sbth |
|- ( ( ( 1 ... M ) ~<_ ( `' P " { 0 } ) /\ ( `' P " { 0 } ) ~<_ ( 1 ... M ) ) -> ( 1 ... M ) ~~ ( `' P " { 0 } ) ) |
178 |
166 176 177
|
syl2anc |
|- ( M e. NN -> ( 1 ... M ) ~~ ( `' P " { 0 } ) ) |
179 |
|
f1finf1o |
|- ( ( ( 1 ... M ) ~~ ( `' P " { 0 } ) /\ ( `' P " { 0 } ) e. Fin ) -> ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } ) <-> T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) ) |
180 |
178 164 179
|
syl2anc |
|- ( M e. NN -> ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } ) <-> T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) ) |
181 |
152 180
|
mpbid |
|- ( M e. NN -> T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) |