Step |
Hyp |
Ref |
Expression |
1 |
|
basel.n |
|- N = ( ( 2 x. M ) + 1 ) |
2 |
|
basel.p |
|- P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) |
3 |
|
basel.t |
|- T = ( n e. ( 1 ... M ) |-> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) |
4 |
|
eqid |
|- ( coeff ` P ) = ( coeff ` P ) |
5 |
|
eqid |
|- ( deg ` P ) = ( deg ` P ) |
6 |
|
eqid |
|- ( `' P " { 0 } ) = ( `' P " { 0 } ) |
7 |
1 2
|
basellem2 |
|- ( M e. NN -> ( P e. ( Poly ` CC ) /\ ( deg ` P ) = M /\ ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) ) |
8 |
7
|
simp1d |
|- ( M e. NN -> P e. ( Poly ` CC ) ) |
9 |
7
|
simp2d |
|- ( M e. NN -> ( deg ` P ) = M ) |
10 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
11 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
12 |
10 11
|
syl |
|- ( M e. NN -> ( # ` ( 1 ... M ) ) = M ) |
13 |
|
fzfid |
|- ( M e. NN -> ( 1 ... M ) e. Fin ) |
14 |
1 2 3
|
basellem4 |
|- ( M e. NN -> T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) |
15 |
13 14
|
hasheqf1od |
|- ( M e. NN -> ( # ` ( 1 ... M ) ) = ( # ` ( `' P " { 0 } ) ) ) |
16 |
9 12 15
|
3eqtr2rd |
|- ( M e. NN -> ( # ` ( `' P " { 0 } ) ) = ( deg ` P ) ) |
17 |
|
id |
|- ( M e. NN -> M e. NN ) |
18 |
9 17
|
eqeltrd |
|- ( M e. NN -> ( deg ` P ) e. NN ) |
19 |
4 5 6 8 16 18
|
vieta1 |
|- ( M e. NN -> sum_ x e. ( `' P " { 0 } ) x = -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) ) |
20 |
|
id |
|- ( x = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) -> x = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
21 |
|
oveq1 |
|- ( n = k -> ( n x. _pi ) = ( k x. _pi ) ) |
22 |
21
|
fvoveq1d |
|- ( n = k -> ( tan ` ( ( n x. _pi ) / N ) ) = ( tan ` ( ( k x. _pi ) / N ) ) ) |
23 |
22
|
oveq1d |
|- ( n = k -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
24 |
|
ovex |
|- ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. _V |
25 |
23 3 24
|
fvmpt |
|- ( k e. ( 1 ... M ) -> ( T ` k ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
26 |
25
|
adantl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( T ` k ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
27 |
|
cnvimass |
|- ( `' P " { 0 } ) C_ dom P |
28 |
|
plyf |
|- ( P e. ( Poly ` CC ) -> P : CC --> CC ) |
29 |
|
fdm |
|- ( P : CC --> CC -> dom P = CC ) |
30 |
8 28 29
|
3syl |
|- ( M e. NN -> dom P = CC ) |
31 |
27 30
|
sseqtrid |
|- ( M e. NN -> ( `' P " { 0 } ) C_ CC ) |
32 |
31
|
sselda |
|- ( ( M e. NN /\ x e. ( `' P " { 0 } ) ) -> x e. CC ) |
33 |
20 13 14 26 32
|
fsumf1o |
|- ( M e. NN -> sum_ x e. ( `' P " { 0 } ) x = sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
34 |
7
|
simp3d |
|- ( M e. NN -> ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) |
35 |
9
|
oveq1d |
|- ( M e. NN -> ( ( deg ` P ) - 1 ) = ( M - 1 ) ) |
36 |
34 35
|
fveq12d |
|- ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) ) |
37 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
38 |
|
oveq2 |
|- ( n = ( M - 1 ) -> ( 2 x. n ) = ( 2 x. ( M - 1 ) ) ) |
39 |
38
|
oveq2d |
|- ( n = ( M - 1 ) -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) |
40 |
|
oveq2 |
|- ( n = ( M - 1 ) -> ( M - n ) = ( M - ( M - 1 ) ) ) |
41 |
40
|
oveq2d |
|- ( n = ( M - 1 ) -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - ( M - 1 ) ) ) ) |
42 |
39 41
|
oveq12d |
|- ( n = ( M - 1 ) -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) |
43 |
|
eqid |
|- ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) |
44 |
|
ovex |
|- ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) e. _V |
45 |
42 43 44
|
fvmpt |
|- ( ( M - 1 ) e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) |
46 |
37 45
|
syl |
|- ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) |
47 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
48 |
|
ax-1cn |
|- 1 e. CC |
49 |
|
nncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( M - ( M - 1 ) ) = 1 ) |
50 |
47 48 49
|
sylancl |
|- ( M e. NN -> ( M - ( M - 1 ) ) = 1 ) |
51 |
50
|
oveq2d |
|- ( M e. NN -> ( -u 1 ^ ( M - ( M - 1 ) ) ) = ( -u 1 ^ 1 ) ) |
52 |
|
neg1cn |
|- -u 1 e. CC |
53 |
|
exp1 |
|- ( -u 1 e. CC -> ( -u 1 ^ 1 ) = -u 1 ) |
54 |
52 53
|
ax-mp |
|- ( -u 1 ^ 1 ) = -u 1 |
55 |
51 54
|
eqtrdi |
|- ( M e. NN -> ( -u 1 ^ ( M - ( M - 1 ) ) ) = -u 1 ) |
56 |
55
|
oveq2d |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) ) |
57 |
|
2nn |
|- 2 e. NN |
58 |
|
nnmulcl |
|- ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) |
59 |
57 58
|
mpan |
|- ( M e. NN -> ( 2 x. M ) e. NN ) |
60 |
59
|
peano2nnd |
|- ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) |
61 |
1 60
|
eqeltrid |
|- ( M e. NN -> N e. NN ) |
62 |
61
|
nnnn0d |
|- ( M e. NN -> N e. NN0 ) |
63 |
|
2z |
|- 2 e. ZZ |
64 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
65 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
66 |
64 65
|
syl |
|- ( M e. NN -> ( M - 1 ) e. ZZ ) |
67 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( 2 x. ( M - 1 ) ) e. ZZ ) |
68 |
63 66 67
|
sylancr |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ZZ ) |
69 |
|
bccl |
|- ( ( N e. NN0 /\ ( 2 x. ( M - 1 ) ) e. ZZ ) -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN0 ) |
70 |
62 68 69
|
syl2anc |
|- ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN0 ) |
71 |
70
|
nn0cnd |
|- ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. CC ) |
72 |
|
mulcom |
|- ( ( ( N _C ( 2 x. ( M - 1 ) ) ) e. CC /\ -u 1 e. CC ) -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) = ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) ) |
73 |
71 52 72
|
sylancl |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) = ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) ) |
74 |
71
|
mulm1d |
|- ( M e. NN -> ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) |
75 |
56 73 74
|
3eqtrd |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) |
76 |
36 46 75
|
3eqtrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) |
77 |
71
|
negcld |
|- ( M e. NN -> -u ( N _C ( 2 x. ( M - 1 ) ) ) e. CC ) |
78 |
76 77
|
eqeltrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) e. CC ) |
79 |
34 9
|
fveq12d |
|- ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) ) |
80 |
|
oveq2 |
|- ( n = M -> ( 2 x. n ) = ( 2 x. M ) ) |
81 |
80
|
oveq2d |
|- ( n = M -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. M ) ) ) |
82 |
|
oveq2 |
|- ( n = M -> ( M - n ) = ( M - M ) ) |
83 |
82
|
oveq2d |
|- ( n = M -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - M ) ) ) |
84 |
81 83
|
oveq12d |
|- ( n = M -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
85 |
|
ovex |
|- ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) e. _V |
86 |
84 43 85
|
fvmpt |
|- ( M e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
87 |
10 86
|
syl |
|- ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
88 |
47
|
subidd |
|- ( M e. NN -> ( M - M ) = 0 ) |
89 |
88
|
oveq2d |
|- ( M e. NN -> ( -u 1 ^ ( M - M ) ) = ( -u 1 ^ 0 ) ) |
90 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
91 |
52 90
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
92 |
89 91
|
eqtrdi |
|- ( M e. NN -> ( -u 1 ^ ( M - M ) ) = 1 ) |
93 |
92
|
oveq2d |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) = ( ( N _C ( 2 x. M ) ) x. 1 ) ) |
94 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
95 |
59
|
nnred |
|- ( M e. NN -> ( 2 x. M ) e. RR ) |
96 |
95
|
lep1d |
|- ( M e. NN -> ( 2 x. M ) <_ ( ( 2 x. M ) + 1 ) ) |
97 |
96 1
|
breqtrrdi |
|- ( M e. NN -> ( 2 x. M ) <_ N ) |
98 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
99 |
59 98
|
eleqtrdi |
|- ( M e. NN -> ( 2 x. M ) e. ( ZZ>= ` 1 ) ) |
100 |
61
|
nnzd |
|- ( M e. NN -> N e. ZZ ) |
101 |
|
elfz5 |
|- ( ( ( 2 x. M ) e. ( ZZ>= ` 1 ) /\ N e. ZZ ) -> ( ( 2 x. M ) e. ( 1 ... N ) <-> ( 2 x. M ) <_ N ) ) |
102 |
99 100 101
|
syl2anc |
|- ( M e. NN -> ( ( 2 x. M ) e. ( 1 ... N ) <-> ( 2 x. M ) <_ N ) ) |
103 |
97 102
|
mpbird |
|- ( M e. NN -> ( 2 x. M ) e. ( 1 ... N ) ) |
104 |
94 103
|
sselid |
|- ( M e. NN -> ( 2 x. M ) e. ( 0 ... N ) ) |
105 |
|
bccl2 |
|- ( ( 2 x. M ) e. ( 0 ... N ) -> ( N _C ( 2 x. M ) ) e. NN ) |
106 |
104 105
|
syl |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) e. NN ) |
107 |
106
|
nncnd |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) e. CC ) |
108 |
107
|
mulid1d |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. 1 ) = ( N _C ( 2 x. M ) ) ) |
109 |
93 108
|
eqtrd |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) = ( N _C ( 2 x. M ) ) ) |
110 |
79 87 109
|
3eqtrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( N _C ( 2 x. M ) ) ) |
111 |
110 107
|
eqeltrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) e. CC ) |
112 |
106
|
nnne0d |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) =/= 0 ) |
113 |
110 112
|
eqnetrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) =/= 0 ) |
114 |
78 111 113
|
divnegd |
|- ( M e. NN -> -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) ) |
115 |
76
|
negeqd |
|- ( M e. NN -> -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = -u -u ( N _C ( 2 x. ( M - 1 ) ) ) ) |
116 |
71
|
negnegd |
|- ( M e. NN -> -u -u ( N _C ( 2 x. ( M - 1 ) ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) |
117 |
115 116
|
eqtrd |
|- ( M e. NN -> -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) |
118 |
117 110
|
oveq12d |
|- ( M e. NN -> ( -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) ) |
119 |
|
bcm1k |
|- ( ( 2 x. M ) e. ( 1 ... N ) -> ( N _C ( 2 x. M ) ) = ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) ) |
120 |
103 119
|
syl |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) ) |
121 |
59
|
nncnd |
|- ( M e. NN -> ( 2 x. M ) e. CC ) |
122 |
|
1cnd |
|- ( M e. NN -> 1 e. CC ) |
123 |
121 122 122
|
pnncand |
|- ( M e. NN -> ( ( ( 2 x. M ) + 1 ) - ( ( 2 x. M ) - 1 ) ) = ( 1 + 1 ) ) |
124 |
1
|
oveq1i |
|- ( N - ( ( 2 x. M ) - 1 ) ) = ( ( ( 2 x. M ) + 1 ) - ( ( 2 x. M ) - 1 ) ) |
125 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
126 |
123 124 125
|
3eqtr4g |
|- ( M e. NN -> ( N - ( ( 2 x. M ) - 1 ) ) = 2 ) |
127 |
|
2nn0 |
|- 2 e. NN0 |
128 |
126 127
|
eqeltrdi |
|- ( M e. NN -> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) |
129 |
|
nnm1nn0 |
|- ( ( 2 x. M ) e. NN -> ( ( 2 x. M ) - 1 ) e. NN0 ) |
130 |
59 129
|
syl |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. NN0 ) |
131 |
|
nn0sub |
|- ( ( ( ( 2 x. M ) - 1 ) e. NN0 /\ N e. NN0 ) -> ( ( ( 2 x. M ) - 1 ) <_ N <-> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) ) |
132 |
130 62 131
|
syl2anc |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) <_ N <-> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) ) |
133 |
128 132
|
mpbird |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) <_ N ) |
134 |
47
|
2timesd |
|- ( M e. NN -> ( 2 x. M ) = ( M + M ) ) |
135 |
134
|
oveq1d |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) = ( ( M + M ) - 1 ) ) |
136 |
47 47 122
|
addsubd |
|- ( M e. NN -> ( ( M + M ) - 1 ) = ( ( M - 1 ) + M ) ) |
137 |
135 136
|
eqtrd |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) = ( ( M - 1 ) + M ) ) |
138 |
|
nn0nnaddcl |
|- ( ( ( M - 1 ) e. NN0 /\ M e. NN ) -> ( ( M - 1 ) + M ) e. NN ) |
139 |
37 138
|
mpancom |
|- ( M e. NN -> ( ( M - 1 ) + M ) e. NN ) |
140 |
137 139
|
eqeltrd |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. NN ) |
141 |
140 98
|
eleqtrdi |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. ( ZZ>= ` 1 ) ) |
142 |
|
elfz5 |
|- ( ( ( ( 2 x. M ) - 1 ) e. ( ZZ>= ` 1 ) /\ N e. ZZ ) -> ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) <-> ( ( 2 x. M ) - 1 ) <_ N ) ) |
143 |
141 100 142
|
syl2anc |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) <-> ( ( 2 x. M ) - 1 ) <_ N ) ) |
144 |
133 143
|
mpbird |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) ) |
145 |
|
bcm1k |
|- ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) ) |
146 |
144 145
|
syl |
|- ( M e. NN -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) ) |
147 |
48
|
2timesi |
|- ( 2 x. 1 ) = ( 1 + 1 ) |
148 |
147
|
eqcomi |
|- ( 1 + 1 ) = ( 2 x. 1 ) |
149 |
148
|
oveq2i |
|- ( ( 2 x. M ) - ( 1 + 1 ) ) = ( ( 2 x. M ) - ( 2 x. 1 ) ) |
150 |
121 122 122
|
subsub4d |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) = ( ( 2 x. M ) - ( 1 + 1 ) ) ) |
151 |
|
2cnd |
|- ( M e. NN -> 2 e. CC ) |
152 |
151 47 122
|
subdid |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) = ( ( 2 x. M ) - ( 2 x. 1 ) ) ) |
153 |
149 150 152
|
3eqtr4a |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) = ( 2 x. ( M - 1 ) ) ) |
154 |
153
|
oveq2d |
|- ( M e. NN -> ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) |
155 |
61
|
nncnd |
|- ( M e. NN -> N e. CC ) |
156 |
140
|
nncnd |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. CC ) |
157 |
155 156 122
|
subsubd |
|- ( M e. NN -> ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) = ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) ) |
158 |
126
|
oveq1d |
|- ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) = ( 2 + 1 ) ) |
159 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
160 |
158 159
|
eqtr4di |
|- ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) = 3 ) |
161 |
157 160
|
eqtrd |
|- ( M e. NN -> ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) = 3 ) |
162 |
161
|
oveq1d |
|- ( M e. NN -> ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) = ( 3 / ( ( 2 x. M ) - 1 ) ) ) |
163 |
154 162
|
oveq12d |
|- ( M e. NN -> ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) ) |
164 |
146 163
|
eqtrd |
|- ( M e. NN -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) ) |
165 |
126
|
oveq1d |
|- ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) = ( 2 / ( 2 x. M ) ) ) |
166 |
164 165
|
oveq12d |
|- ( M e. NN -> ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) = ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) x. ( 2 / ( 2 x. M ) ) ) ) |
167 |
|
3re |
|- 3 e. RR |
168 |
|
nndivre |
|- ( ( 3 e. RR /\ ( ( 2 x. M ) - 1 ) e. NN ) -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. RR ) |
169 |
167 140 168
|
sylancr |
|- ( M e. NN -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. RR ) |
170 |
169
|
recnd |
|- ( M e. NN -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. CC ) |
171 |
|
2re |
|- 2 e. RR |
172 |
|
nndivre |
|- ( ( 2 e. RR /\ ( 2 x. M ) e. NN ) -> ( 2 / ( 2 x. M ) ) e. RR ) |
173 |
171 59 172
|
sylancr |
|- ( M e. NN -> ( 2 / ( 2 x. M ) ) e. RR ) |
174 |
173
|
recnd |
|- ( M e. NN -> ( 2 / ( 2 x. M ) ) e. CC ) |
175 |
71 170 174
|
mulassd |
|- ( M e. NN -> ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) x. ( 2 / ( 2 x. M ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) ) |
176 |
120 166 175
|
3eqtrd |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) ) |
177 |
|
3cn |
|- 3 e. CC |
178 |
177
|
a1i |
|- ( M e. NN -> 3 e. CC ) |
179 |
140
|
nnne0d |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) =/= 0 ) |
180 |
59
|
nnne0d |
|- ( M e. NN -> ( 2 x. M ) =/= 0 ) |
181 |
178 156 151 121 179 180
|
divmuldivd |
|- ( M e. NN -> ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) = ( ( 3 x. 2 ) / ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) ) ) |
182 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
183 |
182
|
a1i |
|- ( M e. NN -> ( 3 x. 2 ) = 6 ) |
184 |
156 121
|
mulcomd |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) = ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) |
185 |
183 184
|
oveq12d |
|- ( M e. NN -> ( ( 3 x. 2 ) / ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) |
186 |
181 185
|
eqtrd |
|- ( M e. NN -> ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) |
187 |
186
|
oveq2d |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) |
188 |
176 187
|
eqtrd |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) |
189 |
188
|
oveq1d |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) |
190 |
|
6re |
|- 6 e. RR |
191 |
59 140
|
nnmulcld |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. NN ) |
192 |
|
nndivre |
|- ( ( 6 e. RR /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. NN ) -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. RR ) |
193 |
190 191 192
|
sylancr |
|- ( M e. NN -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. RR ) |
194 |
193
|
recnd |
|- ( M e. NN -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. CC ) |
195 |
|
nnm1nn0 |
|- ( ( ( 2 x. M ) - 1 ) e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) e. NN0 ) |
196 |
140 195
|
syl |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) e. NN0 ) |
197 |
153 196
|
eqeltrrd |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. NN0 ) |
198 |
197
|
nn0red |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. RR ) |
199 |
140
|
nnred |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. RR ) |
200 |
61
|
nnred |
|- ( M e. NN -> N e. RR ) |
201 |
199
|
ltm1d |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) < ( ( 2 x. M ) - 1 ) ) |
202 |
153 201
|
eqbrtrrd |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) < ( ( 2 x. M ) - 1 ) ) |
203 |
198 199 202
|
ltled |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) <_ ( ( 2 x. M ) - 1 ) ) |
204 |
198 199 200 203 133
|
letrd |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) <_ N ) |
205 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
206 |
197 205
|
eleqtrdi |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ( ZZ>= ` 0 ) ) |
207 |
|
elfz5 |
|- ( ( ( 2 x. ( M - 1 ) ) e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) <-> ( 2 x. ( M - 1 ) ) <_ N ) ) |
208 |
206 100 207
|
syl2anc |
|- ( M e. NN -> ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) <-> ( 2 x. ( M - 1 ) ) <_ N ) ) |
209 |
204 208
|
mpbird |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) ) |
210 |
|
bccl2 |
|- ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN ) |
211 |
209 210
|
syl |
|- ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN ) |
212 |
211
|
nnne0d |
|- ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) =/= 0 ) |
213 |
194 71 212
|
divcan3d |
|- ( M e. NN -> ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) |
214 |
189 213
|
eqtrd |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) |
215 |
214
|
oveq2d |
|- ( M e. NN -> ( 1 / ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) = ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) |
216 |
107 71 112 212
|
recdivd |
|- ( M e. NN -> ( 1 / ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) ) |
217 |
191
|
nncnd |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) |
218 |
191
|
nnne0d |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) |
219 |
|
6cn |
|- 6 e. CC |
220 |
|
6nn |
|- 6 e. NN |
221 |
220
|
nnne0i |
|- 6 =/= 0 |
222 |
|
recdiv |
|- ( ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) ) -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
223 |
219 221 222
|
mpanl12 |
|- ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
224 |
217 218 223
|
syl2anc |
|- ( M e. NN -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
225 |
215 216 224
|
3eqtr3d |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
226 |
114 118 225
|
3eqtrd |
|- ( M e. NN -> -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
227 |
19 33 226
|
3eqtr3d |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |