| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basel.n |
|- N = ( ( 2 x. M ) + 1 ) |
| 2 |
|
basel.p |
|- P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) |
| 3 |
|
basel.t |
|- T = ( n e. ( 1 ... M ) |-> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) |
| 4 |
|
eqid |
|- ( coeff ` P ) = ( coeff ` P ) |
| 5 |
|
eqid |
|- ( deg ` P ) = ( deg ` P ) |
| 6 |
|
eqid |
|- ( `' P " { 0 } ) = ( `' P " { 0 } ) |
| 7 |
1 2
|
basellem2 |
|- ( M e. NN -> ( P e. ( Poly ` CC ) /\ ( deg ` P ) = M /\ ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) ) |
| 8 |
7
|
simp1d |
|- ( M e. NN -> P e. ( Poly ` CC ) ) |
| 9 |
7
|
simp2d |
|- ( M e. NN -> ( deg ` P ) = M ) |
| 10 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
| 11 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
| 12 |
10 11
|
syl |
|- ( M e. NN -> ( # ` ( 1 ... M ) ) = M ) |
| 13 |
|
fzfid |
|- ( M e. NN -> ( 1 ... M ) e. Fin ) |
| 14 |
1 2 3
|
basellem4 |
|- ( M e. NN -> T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) |
| 15 |
13 14
|
hasheqf1od |
|- ( M e. NN -> ( # ` ( 1 ... M ) ) = ( # ` ( `' P " { 0 } ) ) ) |
| 16 |
9 12 15
|
3eqtr2rd |
|- ( M e. NN -> ( # ` ( `' P " { 0 } ) ) = ( deg ` P ) ) |
| 17 |
|
id |
|- ( M e. NN -> M e. NN ) |
| 18 |
9 17
|
eqeltrd |
|- ( M e. NN -> ( deg ` P ) e. NN ) |
| 19 |
4 5 6 8 16 18
|
vieta1 |
|- ( M e. NN -> sum_ x e. ( `' P " { 0 } ) x = -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) ) |
| 20 |
|
id |
|- ( x = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) -> x = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
| 21 |
|
oveq1 |
|- ( n = k -> ( n x. _pi ) = ( k x. _pi ) ) |
| 22 |
21
|
fvoveq1d |
|- ( n = k -> ( tan ` ( ( n x. _pi ) / N ) ) = ( tan ` ( ( k x. _pi ) / N ) ) ) |
| 23 |
22
|
oveq1d |
|- ( n = k -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
| 24 |
|
ovex |
|- ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. _V |
| 25 |
23 3 24
|
fvmpt |
|- ( k e. ( 1 ... M ) -> ( T ` k ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
| 26 |
25
|
adantl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( T ` k ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
| 27 |
|
cnvimass |
|- ( `' P " { 0 } ) C_ dom P |
| 28 |
|
plyf |
|- ( P e. ( Poly ` CC ) -> P : CC --> CC ) |
| 29 |
|
fdm |
|- ( P : CC --> CC -> dom P = CC ) |
| 30 |
8 28 29
|
3syl |
|- ( M e. NN -> dom P = CC ) |
| 31 |
27 30
|
sseqtrid |
|- ( M e. NN -> ( `' P " { 0 } ) C_ CC ) |
| 32 |
31
|
sselda |
|- ( ( M e. NN /\ x e. ( `' P " { 0 } ) ) -> x e. CC ) |
| 33 |
20 13 14 26 32
|
fsumf1o |
|- ( M e. NN -> sum_ x e. ( `' P " { 0 } ) x = sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
| 34 |
7
|
simp3d |
|- ( M e. NN -> ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) |
| 35 |
9
|
oveq1d |
|- ( M e. NN -> ( ( deg ` P ) - 1 ) = ( M - 1 ) ) |
| 36 |
34 35
|
fveq12d |
|- ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) ) |
| 37 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
| 38 |
|
oveq2 |
|- ( n = ( M - 1 ) -> ( 2 x. n ) = ( 2 x. ( M - 1 ) ) ) |
| 39 |
38
|
oveq2d |
|- ( n = ( M - 1 ) -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) |
| 40 |
|
oveq2 |
|- ( n = ( M - 1 ) -> ( M - n ) = ( M - ( M - 1 ) ) ) |
| 41 |
40
|
oveq2d |
|- ( n = ( M - 1 ) -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - ( M - 1 ) ) ) ) |
| 42 |
39 41
|
oveq12d |
|- ( n = ( M - 1 ) -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) |
| 43 |
|
eqid |
|- ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) |
| 44 |
|
ovex |
|- ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) e. _V |
| 45 |
42 43 44
|
fvmpt |
|- ( ( M - 1 ) e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) |
| 46 |
37 45
|
syl |
|- ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) |
| 47 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
| 48 |
|
ax-1cn |
|- 1 e. CC |
| 49 |
|
nncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( M - ( M - 1 ) ) = 1 ) |
| 50 |
47 48 49
|
sylancl |
|- ( M e. NN -> ( M - ( M - 1 ) ) = 1 ) |
| 51 |
50
|
oveq2d |
|- ( M e. NN -> ( -u 1 ^ ( M - ( M - 1 ) ) ) = ( -u 1 ^ 1 ) ) |
| 52 |
|
neg1cn |
|- -u 1 e. CC |
| 53 |
|
exp1 |
|- ( -u 1 e. CC -> ( -u 1 ^ 1 ) = -u 1 ) |
| 54 |
52 53
|
ax-mp |
|- ( -u 1 ^ 1 ) = -u 1 |
| 55 |
51 54
|
eqtrdi |
|- ( M e. NN -> ( -u 1 ^ ( M - ( M - 1 ) ) ) = -u 1 ) |
| 56 |
55
|
oveq2d |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) ) |
| 57 |
|
2nn |
|- 2 e. NN |
| 58 |
|
nnmulcl |
|- ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) |
| 59 |
57 58
|
mpan |
|- ( M e. NN -> ( 2 x. M ) e. NN ) |
| 60 |
59
|
peano2nnd |
|- ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) |
| 61 |
1 60
|
eqeltrid |
|- ( M e. NN -> N e. NN ) |
| 62 |
61
|
nnnn0d |
|- ( M e. NN -> N e. NN0 ) |
| 63 |
|
2z |
|- 2 e. ZZ |
| 64 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
| 65 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 66 |
64 65
|
syl |
|- ( M e. NN -> ( M - 1 ) e. ZZ ) |
| 67 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( 2 x. ( M - 1 ) ) e. ZZ ) |
| 68 |
63 66 67
|
sylancr |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ZZ ) |
| 69 |
|
bccl |
|- ( ( N e. NN0 /\ ( 2 x. ( M - 1 ) ) e. ZZ ) -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN0 ) |
| 70 |
62 68 69
|
syl2anc |
|- ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN0 ) |
| 71 |
70
|
nn0cnd |
|- ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. CC ) |
| 72 |
|
mulcom |
|- ( ( ( N _C ( 2 x. ( M - 1 ) ) ) e. CC /\ -u 1 e. CC ) -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) = ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) ) |
| 73 |
71 52 72
|
sylancl |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) = ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) ) |
| 74 |
71
|
mulm1d |
|- ( M e. NN -> ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) |
| 75 |
56 73 74
|
3eqtrd |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) |
| 76 |
36 46 75
|
3eqtrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) |
| 77 |
71
|
negcld |
|- ( M e. NN -> -u ( N _C ( 2 x. ( M - 1 ) ) ) e. CC ) |
| 78 |
76 77
|
eqeltrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) e. CC ) |
| 79 |
34 9
|
fveq12d |
|- ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) ) |
| 80 |
|
oveq2 |
|- ( n = M -> ( 2 x. n ) = ( 2 x. M ) ) |
| 81 |
80
|
oveq2d |
|- ( n = M -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. M ) ) ) |
| 82 |
|
oveq2 |
|- ( n = M -> ( M - n ) = ( M - M ) ) |
| 83 |
82
|
oveq2d |
|- ( n = M -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - M ) ) ) |
| 84 |
81 83
|
oveq12d |
|- ( n = M -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
| 85 |
|
ovex |
|- ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) e. _V |
| 86 |
84 43 85
|
fvmpt |
|- ( M e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
| 87 |
10 86
|
syl |
|- ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) |
| 88 |
47
|
subidd |
|- ( M e. NN -> ( M - M ) = 0 ) |
| 89 |
88
|
oveq2d |
|- ( M e. NN -> ( -u 1 ^ ( M - M ) ) = ( -u 1 ^ 0 ) ) |
| 90 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
| 91 |
52 90
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
| 92 |
89 91
|
eqtrdi |
|- ( M e. NN -> ( -u 1 ^ ( M - M ) ) = 1 ) |
| 93 |
92
|
oveq2d |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) = ( ( N _C ( 2 x. M ) ) x. 1 ) ) |
| 94 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 95 |
59
|
nnred |
|- ( M e. NN -> ( 2 x. M ) e. RR ) |
| 96 |
95
|
lep1d |
|- ( M e. NN -> ( 2 x. M ) <_ ( ( 2 x. M ) + 1 ) ) |
| 97 |
96 1
|
breqtrrdi |
|- ( M e. NN -> ( 2 x. M ) <_ N ) |
| 98 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 99 |
59 98
|
eleqtrdi |
|- ( M e. NN -> ( 2 x. M ) e. ( ZZ>= ` 1 ) ) |
| 100 |
61
|
nnzd |
|- ( M e. NN -> N e. ZZ ) |
| 101 |
|
elfz5 |
|- ( ( ( 2 x. M ) e. ( ZZ>= ` 1 ) /\ N e. ZZ ) -> ( ( 2 x. M ) e. ( 1 ... N ) <-> ( 2 x. M ) <_ N ) ) |
| 102 |
99 100 101
|
syl2anc |
|- ( M e. NN -> ( ( 2 x. M ) e. ( 1 ... N ) <-> ( 2 x. M ) <_ N ) ) |
| 103 |
97 102
|
mpbird |
|- ( M e. NN -> ( 2 x. M ) e. ( 1 ... N ) ) |
| 104 |
94 103
|
sselid |
|- ( M e. NN -> ( 2 x. M ) e. ( 0 ... N ) ) |
| 105 |
|
bccl2 |
|- ( ( 2 x. M ) e. ( 0 ... N ) -> ( N _C ( 2 x. M ) ) e. NN ) |
| 106 |
104 105
|
syl |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) e. NN ) |
| 107 |
106
|
nncnd |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) e. CC ) |
| 108 |
107
|
mulridd |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. 1 ) = ( N _C ( 2 x. M ) ) ) |
| 109 |
93 108
|
eqtrd |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) = ( N _C ( 2 x. M ) ) ) |
| 110 |
79 87 109
|
3eqtrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( N _C ( 2 x. M ) ) ) |
| 111 |
110 107
|
eqeltrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) e. CC ) |
| 112 |
106
|
nnne0d |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) =/= 0 ) |
| 113 |
110 112
|
eqnetrd |
|- ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) =/= 0 ) |
| 114 |
78 111 113
|
divnegd |
|- ( M e. NN -> -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) ) |
| 115 |
76
|
negeqd |
|- ( M e. NN -> -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = -u -u ( N _C ( 2 x. ( M - 1 ) ) ) ) |
| 116 |
71
|
negnegd |
|- ( M e. NN -> -u -u ( N _C ( 2 x. ( M - 1 ) ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) |
| 117 |
115 116
|
eqtrd |
|- ( M e. NN -> -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) |
| 118 |
117 110
|
oveq12d |
|- ( M e. NN -> ( -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) ) |
| 119 |
|
bcm1k |
|- ( ( 2 x. M ) e. ( 1 ... N ) -> ( N _C ( 2 x. M ) ) = ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) ) |
| 120 |
103 119
|
syl |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) ) |
| 121 |
59
|
nncnd |
|- ( M e. NN -> ( 2 x. M ) e. CC ) |
| 122 |
|
1cnd |
|- ( M e. NN -> 1 e. CC ) |
| 123 |
121 122 122
|
pnncand |
|- ( M e. NN -> ( ( ( 2 x. M ) + 1 ) - ( ( 2 x. M ) - 1 ) ) = ( 1 + 1 ) ) |
| 124 |
1
|
oveq1i |
|- ( N - ( ( 2 x. M ) - 1 ) ) = ( ( ( 2 x. M ) + 1 ) - ( ( 2 x. M ) - 1 ) ) |
| 125 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 126 |
123 124 125
|
3eqtr4g |
|- ( M e. NN -> ( N - ( ( 2 x. M ) - 1 ) ) = 2 ) |
| 127 |
|
2nn0 |
|- 2 e. NN0 |
| 128 |
126 127
|
eqeltrdi |
|- ( M e. NN -> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) |
| 129 |
|
nnm1nn0 |
|- ( ( 2 x. M ) e. NN -> ( ( 2 x. M ) - 1 ) e. NN0 ) |
| 130 |
59 129
|
syl |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. NN0 ) |
| 131 |
|
nn0sub |
|- ( ( ( ( 2 x. M ) - 1 ) e. NN0 /\ N e. NN0 ) -> ( ( ( 2 x. M ) - 1 ) <_ N <-> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) ) |
| 132 |
130 62 131
|
syl2anc |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) <_ N <-> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) ) |
| 133 |
128 132
|
mpbird |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) <_ N ) |
| 134 |
47
|
2timesd |
|- ( M e. NN -> ( 2 x. M ) = ( M + M ) ) |
| 135 |
134
|
oveq1d |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) = ( ( M + M ) - 1 ) ) |
| 136 |
47 47 122
|
addsubd |
|- ( M e. NN -> ( ( M + M ) - 1 ) = ( ( M - 1 ) + M ) ) |
| 137 |
135 136
|
eqtrd |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) = ( ( M - 1 ) + M ) ) |
| 138 |
|
nn0nnaddcl |
|- ( ( ( M - 1 ) e. NN0 /\ M e. NN ) -> ( ( M - 1 ) + M ) e. NN ) |
| 139 |
37 138
|
mpancom |
|- ( M e. NN -> ( ( M - 1 ) + M ) e. NN ) |
| 140 |
137 139
|
eqeltrd |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. NN ) |
| 141 |
140 98
|
eleqtrdi |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. ( ZZ>= ` 1 ) ) |
| 142 |
|
elfz5 |
|- ( ( ( ( 2 x. M ) - 1 ) e. ( ZZ>= ` 1 ) /\ N e. ZZ ) -> ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) <-> ( ( 2 x. M ) - 1 ) <_ N ) ) |
| 143 |
141 100 142
|
syl2anc |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) <-> ( ( 2 x. M ) - 1 ) <_ N ) ) |
| 144 |
133 143
|
mpbird |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) ) |
| 145 |
|
bcm1k |
|- ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) ) |
| 146 |
144 145
|
syl |
|- ( M e. NN -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) ) |
| 147 |
48
|
2timesi |
|- ( 2 x. 1 ) = ( 1 + 1 ) |
| 148 |
147
|
eqcomi |
|- ( 1 + 1 ) = ( 2 x. 1 ) |
| 149 |
148
|
oveq2i |
|- ( ( 2 x. M ) - ( 1 + 1 ) ) = ( ( 2 x. M ) - ( 2 x. 1 ) ) |
| 150 |
121 122 122
|
subsub4d |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) = ( ( 2 x. M ) - ( 1 + 1 ) ) ) |
| 151 |
|
2cnd |
|- ( M e. NN -> 2 e. CC ) |
| 152 |
151 47 122
|
subdid |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) = ( ( 2 x. M ) - ( 2 x. 1 ) ) ) |
| 153 |
149 150 152
|
3eqtr4a |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) = ( 2 x. ( M - 1 ) ) ) |
| 154 |
153
|
oveq2d |
|- ( M e. NN -> ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) |
| 155 |
61
|
nncnd |
|- ( M e. NN -> N e. CC ) |
| 156 |
140
|
nncnd |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. CC ) |
| 157 |
155 156 122
|
subsubd |
|- ( M e. NN -> ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) = ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) ) |
| 158 |
126
|
oveq1d |
|- ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) = ( 2 + 1 ) ) |
| 159 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 160 |
158 159
|
eqtr4di |
|- ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) = 3 ) |
| 161 |
157 160
|
eqtrd |
|- ( M e. NN -> ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) = 3 ) |
| 162 |
161
|
oveq1d |
|- ( M e. NN -> ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) = ( 3 / ( ( 2 x. M ) - 1 ) ) ) |
| 163 |
154 162
|
oveq12d |
|- ( M e. NN -> ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) ) |
| 164 |
146 163
|
eqtrd |
|- ( M e. NN -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) ) |
| 165 |
126
|
oveq1d |
|- ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) = ( 2 / ( 2 x. M ) ) ) |
| 166 |
164 165
|
oveq12d |
|- ( M e. NN -> ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) = ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) x. ( 2 / ( 2 x. M ) ) ) ) |
| 167 |
|
3re |
|- 3 e. RR |
| 168 |
|
nndivre |
|- ( ( 3 e. RR /\ ( ( 2 x. M ) - 1 ) e. NN ) -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. RR ) |
| 169 |
167 140 168
|
sylancr |
|- ( M e. NN -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. RR ) |
| 170 |
169
|
recnd |
|- ( M e. NN -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. CC ) |
| 171 |
|
2re |
|- 2 e. RR |
| 172 |
|
nndivre |
|- ( ( 2 e. RR /\ ( 2 x. M ) e. NN ) -> ( 2 / ( 2 x. M ) ) e. RR ) |
| 173 |
171 59 172
|
sylancr |
|- ( M e. NN -> ( 2 / ( 2 x. M ) ) e. RR ) |
| 174 |
173
|
recnd |
|- ( M e. NN -> ( 2 / ( 2 x. M ) ) e. CC ) |
| 175 |
71 170 174
|
mulassd |
|- ( M e. NN -> ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) x. ( 2 / ( 2 x. M ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) ) |
| 176 |
120 166 175
|
3eqtrd |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) ) |
| 177 |
|
3cn |
|- 3 e. CC |
| 178 |
177
|
a1i |
|- ( M e. NN -> 3 e. CC ) |
| 179 |
140
|
nnne0d |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) =/= 0 ) |
| 180 |
59
|
nnne0d |
|- ( M e. NN -> ( 2 x. M ) =/= 0 ) |
| 181 |
178 156 151 121 179 180
|
divmuldivd |
|- ( M e. NN -> ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) = ( ( 3 x. 2 ) / ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) ) ) |
| 182 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 183 |
182
|
a1i |
|- ( M e. NN -> ( 3 x. 2 ) = 6 ) |
| 184 |
156 121
|
mulcomd |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) = ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) |
| 185 |
183 184
|
oveq12d |
|- ( M e. NN -> ( ( 3 x. 2 ) / ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) |
| 186 |
181 185
|
eqtrd |
|- ( M e. NN -> ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) |
| 187 |
186
|
oveq2d |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) |
| 188 |
176 187
|
eqtrd |
|- ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) |
| 189 |
188
|
oveq1d |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) |
| 190 |
|
6re |
|- 6 e. RR |
| 191 |
59 140
|
nnmulcld |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. NN ) |
| 192 |
|
nndivre |
|- ( ( 6 e. RR /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. NN ) -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. RR ) |
| 193 |
190 191 192
|
sylancr |
|- ( M e. NN -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. RR ) |
| 194 |
193
|
recnd |
|- ( M e. NN -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. CC ) |
| 195 |
|
nnm1nn0 |
|- ( ( ( 2 x. M ) - 1 ) e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) e. NN0 ) |
| 196 |
140 195
|
syl |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) e. NN0 ) |
| 197 |
153 196
|
eqeltrrd |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. NN0 ) |
| 198 |
197
|
nn0red |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. RR ) |
| 199 |
140
|
nnred |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. RR ) |
| 200 |
61
|
nnred |
|- ( M e. NN -> N e. RR ) |
| 201 |
199
|
ltm1d |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) < ( ( 2 x. M ) - 1 ) ) |
| 202 |
153 201
|
eqbrtrrd |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) < ( ( 2 x. M ) - 1 ) ) |
| 203 |
198 199 202
|
ltled |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) <_ ( ( 2 x. M ) - 1 ) ) |
| 204 |
198 199 200 203 133
|
letrd |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) <_ N ) |
| 205 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 206 |
197 205
|
eleqtrdi |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ( ZZ>= ` 0 ) ) |
| 207 |
|
elfz5 |
|- ( ( ( 2 x. ( M - 1 ) ) e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) <-> ( 2 x. ( M - 1 ) ) <_ N ) ) |
| 208 |
206 100 207
|
syl2anc |
|- ( M e. NN -> ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) <-> ( 2 x. ( M - 1 ) ) <_ N ) ) |
| 209 |
204 208
|
mpbird |
|- ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) ) |
| 210 |
|
bccl2 |
|- ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN ) |
| 211 |
209 210
|
syl |
|- ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN ) |
| 212 |
211
|
nnne0d |
|- ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) =/= 0 ) |
| 213 |
194 71 212
|
divcan3d |
|- ( M e. NN -> ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) |
| 214 |
189 213
|
eqtrd |
|- ( M e. NN -> ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) |
| 215 |
214
|
oveq2d |
|- ( M e. NN -> ( 1 / ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) = ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) |
| 216 |
107 71 112 212
|
recdivd |
|- ( M e. NN -> ( 1 / ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) ) |
| 217 |
191
|
nncnd |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) |
| 218 |
191
|
nnne0d |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) |
| 219 |
|
6cn |
|- 6 e. CC |
| 220 |
|
6nn |
|- 6 e. NN |
| 221 |
220
|
nnne0i |
|- 6 =/= 0 |
| 222 |
|
recdiv |
|- ( ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) ) -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
| 223 |
219 221 222
|
mpanl12 |
|- ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
| 224 |
217 218 223
|
syl2anc |
|- ( M e. NN -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
| 225 |
215 216 224
|
3eqtr3d |
|- ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
| 226 |
114 118 225
|
3eqtrd |
|- ( M e. NN -> -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
| 227 |
19 33 226
|
3eqtr3d |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |