| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basel.g |
|- G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
| 2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 3 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 4 |
|
ax-1cn |
|- 1 e. CC |
| 5 |
|
divcnv |
|- ( 1 e. CC -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
| 6 |
4 5
|
mp1i |
|- ( T. -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
| 7 |
|
nnex |
|- NN e. _V |
| 8 |
7
|
mptex |
|- ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V |
| 9 |
1 8
|
eqeltri |
|- G e. _V |
| 10 |
9
|
a1i |
|- ( T. -> G e. _V ) |
| 11 |
|
oveq2 |
|- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
| 12 |
|
eqid |
|- ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) |
| 13 |
|
ovex |
|- ( 1 / k ) e. _V |
| 14 |
11 12 13
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) |
| 15 |
14
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) |
| 16 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
| 17 |
16
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 18 |
15 17
|
eqeltrd |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) e. RR ) |
| 19 |
|
oveq2 |
|- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
| 20 |
19
|
oveq1d |
|- ( n = k -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 21 |
20
|
oveq2d |
|- ( n = k -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 22 |
|
ovex |
|- ( 1 / ( ( 2 x. k ) + 1 ) ) e. _V |
| 23 |
21 1 22
|
fvmpt |
|- ( k e. NN -> ( G ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 24 |
23
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 25 |
|
2nn |
|- 2 e. NN |
| 26 |
25
|
a1i |
|- ( T. -> 2 e. NN ) |
| 27 |
|
nnmulcl |
|- ( ( 2 e. NN /\ k e. NN ) -> ( 2 x. k ) e. NN ) |
| 28 |
26 27
|
sylan |
|- ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. NN ) |
| 29 |
28
|
peano2nnd |
|- ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 30 |
29
|
nnrecred |
|- ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR ) |
| 31 |
24 30
|
eqeltrd |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 32 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 33 |
32
|
adantl |
|- ( ( T. /\ k e. NN ) -> k e. RR ) |
| 34 |
28
|
nnred |
|- ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. RR ) |
| 35 |
29
|
nnred |
|- ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR ) |
| 36 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 37 |
36
|
adantl |
|- ( ( T. /\ k e. NN ) -> k e. NN0 ) |
| 38 |
|
nn0addge1 |
|- ( ( k e. RR /\ k e. NN0 ) -> k <_ ( k + k ) ) |
| 39 |
33 37 38
|
syl2anc |
|- ( ( T. /\ k e. NN ) -> k <_ ( k + k ) ) |
| 40 |
33
|
recnd |
|- ( ( T. /\ k e. NN ) -> k e. CC ) |
| 41 |
40
|
2timesd |
|- ( ( T. /\ k e. NN ) -> ( 2 x. k ) = ( k + k ) ) |
| 42 |
39 41
|
breqtrrd |
|- ( ( T. /\ k e. NN ) -> k <_ ( 2 x. k ) ) |
| 43 |
34
|
lep1d |
|- ( ( T. /\ k e. NN ) -> ( 2 x. k ) <_ ( ( 2 x. k ) + 1 ) ) |
| 44 |
33 34 35 42 43
|
letrd |
|- ( ( T. /\ k e. NN ) -> k <_ ( ( 2 x. k ) + 1 ) ) |
| 45 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
| 46 |
45
|
adantl |
|- ( ( T. /\ k e. NN ) -> 0 < k ) |
| 47 |
29
|
nngt0d |
|- ( ( T. /\ k e. NN ) -> 0 < ( ( 2 x. k ) + 1 ) ) |
| 48 |
|
lerec |
|- ( ( ( k e. RR /\ 0 < k ) /\ ( ( ( 2 x. k ) + 1 ) e. RR /\ 0 < ( ( 2 x. k ) + 1 ) ) ) -> ( k <_ ( ( 2 x. k ) + 1 ) <-> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) ) |
| 49 |
33 46 35 47 48
|
syl22anc |
|- ( ( T. /\ k e. NN ) -> ( k <_ ( ( 2 x. k ) + 1 ) <-> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) ) |
| 50 |
44 49
|
mpbid |
|- ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) |
| 51 |
50 24 15
|
3brtr4d |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) |
| 52 |
29
|
nnrpd |
|- ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR+ ) |
| 53 |
52
|
rpreccld |
|- ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR+ ) |
| 54 |
53
|
rpge0d |
|- ( ( T. /\ k e. NN ) -> 0 <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 55 |
54 24
|
breqtrrd |
|- ( ( T. /\ k e. NN ) -> 0 <_ ( G ` k ) ) |
| 56 |
2 3 6 10 18 31 51 55
|
climsqz2 |
|- ( T. -> G ~~> 0 ) |
| 57 |
56
|
mptru |
|- G ~~> 0 |