Step |
Hyp |
Ref |
Expression |
1 |
|
basel.g |
|- G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
2 |
|
basellem7.2 |
|- A e. CC |
3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
4 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
5 |
|
ax-1cn |
|- 1 e. CC |
6 |
3
|
eqimss2i |
|- ( ZZ>= ` 1 ) C_ NN |
7 |
|
nnex |
|- NN e. _V |
8 |
6 7
|
climconst2 |
|- ( ( 1 e. CC /\ 1 e. ZZ ) -> ( NN X. { 1 } ) ~~> 1 ) |
9 |
5 4 8
|
sylancr |
|- ( T. -> ( NN X. { 1 } ) ~~> 1 ) |
10 |
|
ovexd |
|- ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) e. _V ) |
11 |
6 7
|
climconst2 |
|- ( ( A e. CC /\ 1 e. ZZ ) -> ( NN X. { A } ) ~~> A ) |
12 |
2 4 11
|
sylancr |
|- ( T. -> ( NN X. { A } ) ~~> A ) |
13 |
|
ovexd |
|- ( T. -> ( ( NN X. { A } ) oF x. G ) e. _V ) |
14 |
1
|
basellem6 |
|- G ~~> 0 |
15 |
14
|
a1i |
|- ( T. -> G ~~> 0 ) |
16 |
2
|
elexi |
|- A e. _V |
17 |
16
|
fconst |
|- ( NN X. { A } ) : NN --> { A } |
18 |
2
|
a1i |
|- ( T. -> A e. CC ) |
19 |
18
|
snssd |
|- ( T. -> { A } C_ CC ) |
20 |
|
fss |
|- ( ( ( NN X. { A } ) : NN --> { A } /\ { A } C_ CC ) -> ( NN X. { A } ) : NN --> CC ) |
21 |
17 19 20
|
sylancr |
|- ( T. -> ( NN X. { A } ) : NN --> CC ) |
22 |
21
|
ffvelrnda |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { A } ) ` k ) e. CC ) |
23 |
|
2nn |
|- 2 e. NN |
24 |
23
|
a1i |
|- ( T. -> 2 e. NN ) |
25 |
|
nnmulcl |
|- ( ( 2 e. NN /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
26 |
24 25
|
sylan |
|- ( ( T. /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
27 |
26
|
peano2nnd |
|- ( ( T. /\ n e. NN ) -> ( ( 2 x. n ) + 1 ) e. NN ) |
28 |
27
|
nnrecred |
|- ( ( T. /\ n e. NN ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) |
29 |
28
|
recnd |
|- ( ( T. /\ n e. NN ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. CC ) |
30 |
29 1
|
fmptd |
|- ( T. -> G : NN --> CC ) |
31 |
30
|
ffvelrnda |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. CC ) |
32 |
21
|
ffnd |
|- ( T. -> ( NN X. { A } ) Fn NN ) |
33 |
30
|
ffnd |
|- ( T. -> G Fn NN ) |
34 |
7
|
a1i |
|- ( T. -> NN e. _V ) |
35 |
|
inidm |
|- ( NN i^i NN ) = NN |
36 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { A } ) ` k ) = ( ( NN X. { A } ) ` k ) ) |
37 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) = ( G ` k ) ) |
38 |
32 33 34 34 35 36 37
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { A } ) oF x. G ) ` k ) = ( ( ( NN X. { A } ) ` k ) x. ( G ` k ) ) ) |
39 |
3 4 12 13 15 22 31 38
|
climmul |
|- ( T. -> ( ( NN X. { A } ) oF x. G ) ~~> ( A x. 0 ) ) |
40 |
2
|
mul01i |
|- ( A x. 0 ) = 0 |
41 |
39 40
|
breqtrdi |
|- ( T. -> ( ( NN X. { A } ) oF x. G ) ~~> 0 ) |
42 |
|
1ex |
|- 1 e. _V |
43 |
42
|
fconst |
|- ( NN X. { 1 } ) : NN --> { 1 } |
44 |
5
|
a1i |
|- ( T. -> 1 e. CC ) |
45 |
44
|
snssd |
|- ( T. -> { 1 } C_ CC ) |
46 |
|
fss |
|- ( ( ( NN X. { 1 } ) : NN --> { 1 } /\ { 1 } C_ CC ) -> ( NN X. { 1 } ) : NN --> CC ) |
47 |
43 45 46
|
sylancr |
|- ( T. -> ( NN X. { 1 } ) : NN --> CC ) |
48 |
47
|
ffvelrnda |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { 1 } ) ` k ) e. CC ) |
49 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
50 |
49
|
adantl |
|- ( ( T. /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
51 |
50 21 30 34 34 35
|
off |
|- ( T. -> ( ( NN X. { A } ) oF x. G ) : NN --> CC ) |
52 |
51
|
ffvelrnda |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { A } ) oF x. G ) ` k ) e. CC ) |
53 |
43
|
a1i |
|- ( T. -> ( NN X. { 1 } ) : NN --> { 1 } ) |
54 |
53
|
ffnd |
|- ( T. -> ( NN X. { 1 } ) Fn NN ) |
55 |
51
|
ffnd |
|- ( T. -> ( ( NN X. { A } ) oF x. G ) Fn NN ) |
56 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { 1 } ) ` k ) = ( ( NN X. { 1 } ) ` k ) ) |
57 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { A } ) oF x. G ) ` k ) = ( ( ( NN X. { A } ) oF x. G ) ` k ) ) |
58 |
54 55 34 34 35 56 57
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) ` k ) = ( ( ( NN X. { 1 } ) ` k ) + ( ( ( NN X. { A } ) oF x. G ) ` k ) ) ) |
59 |
3 4 9 10 41 48 52 58
|
climadd |
|- ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) ~~> ( 1 + 0 ) ) |
60 |
59
|
mptru |
|- ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) ~~> ( 1 + 0 ) |
61 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
62 |
60 61
|
breqtri |
|- ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) ~~> 1 |