Step |
Hyp |
Ref |
Expression |
1 |
|
basel.g |
|- G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
2 |
|
basel.f |
|- F = seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) |
3 |
|
basel.h |
|- H = ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) |
4 |
|
basel.j |
|- J = ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) |
5 |
|
basel.k |
|- K = ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) |
6 |
|
basellem8.n |
|- N = ( ( 2 x. M ) + 1 ) |
7 |
|
fzfid |
|- ( M e. NN -> ( 1 ... M ) e. Fin ) |
8 |
|
pire |
|- _pi e. RR |
9 |
|
2nn |
|- 2 e. NN |
10 |
|
nnmulcl |
|- ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) |
11 |
9 10
|
mpan |
|- ( M e. NN -> ( 2 x. M ) e. NN ) |
12 |
11
|
peano2nnd |
|- ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) |
13 |
6 12
|
eqeltrid |
|- ( M e. NN -> N e. NN ) |
14 |
|
nndivre |
|- ( ( _pi e. RR /\ N e. NN ) -> ( _pi / N ) e. RR ) |
15 |
8 13 14
|
sylancr |
|- ( M e. NN -> ( _pi / N ) e. RR ) |
16 |
15
|
resqcld |
|- ( M e. NN -> ( ( _pi / N ) ^ 2 ) e. RR ) |
17 |
16
|
adantr |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( _pi / N ) ^ 2 ) e. RR ) |
18 |
6
|
basellem1 |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) |
19 |
|
tanrpcl |
|- ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ ) |
20 |
18 19
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ ) |
21 |
20
|
rpred |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. RR ) |
22 |
20
|
rpne0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) =/= 0 ) |
23 |
|
2z |
|- 2 e. ZZ |
24 |
|
znegcl |
|- ( 2 e. ZZ -> -u 2 e. ZZ ) |
25 |
23 24
|
ax-mp |
|- -u 2 e. ZZ |
26 |
25
|
a1i |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> -u 2 e. ZZ ) |
27 |
21 22 26
|
reexpclzd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. RR ) |
28 |
17 27
|
remulcld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) e. RR ) |
29 |
|
elfznn |
|- ( k e. ( 1 ... M ) -> k e. NN ) |
30 |
29
|
adantl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k e. NN ) |
31 |
30
|
nnred |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k e. RR ) |
32 |
30
|
nnne0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k =/= 0 ) |
33 |
31 32 26
|
reexpclzd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) e. RR ) |
34 |
21
|
recnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. CC ) |
35 |
|
2nn0 |
|- 2 e. NN0 |
36 |
|
expneg |
|- ( ( ( tan ` ( ( k x. _pi ) / N ) ) e. CC /\ 2 e. NN0 ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
37 |
34 35 36
|
sylancl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
38 |
37
|
oveq2d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
39 |
15
|
recnd |
|- ( M e. NN -> ( _pi / N ) e. CC ) |
40 |
39
|
sqcld |
|- ( M e. NN -> ( ( _pi / N ) ^ 2 ) e. CC ) |
41 |
40
|
adantr |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( _pi / N ) ^ 2 ) e. CC ) |
42 |
|
rpexpcl |
|- ( ( ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) |
43 |
20 23 42
|
sylancl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) |
44 |
43
|
rpred |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR ) |
45 |
44
|
recnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. CC ) |
46 |
43
|
rpne0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 ) |
47 |
41 45 46
|
divrecd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
48 |
38 47
|
eqtr4d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
49 |
30
|
nnrpd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k e. RR+ ) |
50 |
|
rpexpcl |
|- ( ( k e. RR+ /\ -u 2 e. ZZ ) -> ( k ^ -u 2 ) e. RR+ ) |
51 |
49 25 50
|
sylancl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) e. RR+ ) |
52 |
30
|
nncnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k e. CC ) |
53 |
52 32 26
|
expnegd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u -u 2 ) = ( 1 / ( k ^ -u 2 ) ) ) |
54 |
|
2cn |
|- 2 e. CC |
55 |
54
|
negnegi |
|- -u -u 2 = 2 |
56 |
55
|
oveq2i |
|- ( k ^ -u -u 2 ) = ( k ^ 2 ) |
57 |
53 56
|
eqtr3di |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 / ( k ^ -u 2 ) ) = ( k ^ 2 ) ) |
58 |
57
|
oveq1d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( 1 / ( k ^ -u 2 ) ) x. ( ( _pi / N ) ^ 2 ) ) = ( ( k ^ 2 ) x. ( ( _pi / N ) ^ 2 ) ) ) |
59 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
60 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
61 |
25
|
a1i |
|- ( k e. NN -> -u 2 e. ZZ ) |
62 |
59 60 61
|
expclzd |
|- ( k e. NN -> ( k ^ -u 2 ) e. CC ) |
63 |
30 62
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) e. CC ) |
64 |
52 32 26
|
expne0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) =/= 0 ) |
65 |
41 63 64
|
divrec2d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) = ( ( 1 / ( k ^ -u 2 ) ) x. ( ( _pi / N ) ^ 2 ) ) ) |
66 |
8
|
recni |
|- _pi e. CC |
67 |
66
|
a1i |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> _pi e. CC ) |
68 |
13
|
nncnd |
|- ( M e. NN -> N e. CC ) |
69 |
13
|
nnne0d |
|- ( M e. NN -> N =/= 0 ) |
70 |
68 69
|
jca |
|- ( M e. NN -> ( N e. CC /\ N =/= 0 ) ) |
71 |
70
|
adantr |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( N e. CC /\ N =/= 0 ) ) |
72 |
|
divass |
|- ( ( k e. CC /\ _pi e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( k x. _pi ) / N ) = ( k x. ( _pi / N ) ) ) |
73 |
52 67 71 72
|
syl3anc |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) = ( k x. ( _pi / N ) ) ) |
74 |
73
|
oveq1d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) = ( ( k x. ( _pi / N ) ) ^ 2 ) ) |
75 |
39
|
adantr |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( _pi / N ) e. CC ) |
76 |
52 75
|
sqmuld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. ( _pi / N ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( _pi / N ) ^ 2 ) ) ) |
77 |
74 76
|
eqtrd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( _pi / N ) ^ 2 ) ) ) |
78 |
58 65 77
|
3eqtr4d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) = ( ( ( k x. _pi ) / N ) ^ 2 ) ) |
79 |
|
elioore |
|- ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( ( k x. _pi ) / N ) e. RR ) |
80 |
18 79
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. RR ) |
81 |
80
|
resqcld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) e. RR ) |
82 |
|
tangtx |
|- ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( ( k x. _pi ) / N ) < ( tan ` ( ( k x. _pi ) / N ) ) ) |
83 |
18 82
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) < ( tan ` ( ( k x. _pi ) / N ) ) ) |
84 |
|
eliooord |
|- ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( ( k x. _pi ) / N ) /\ ( ( k x. _pi ) / N ) < ( _pi / 2 ) ) ) |
85 |
18 84
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 0 < ( ( k x. _pi ) / N ) /\ ( ( k x. _pi ) / N ) < ( _pi / 2 ) ) ) |
86 |
85
|
simpld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 < ( ( k x. _pi ) / N ) ) |
87 |
80 86
|
elrpd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. RR+ ) |
88 |
87
|
rpge0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 <_ ( ( k x. _pi ) / N ) ) |
89 |
20
|
rpge0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 <_ ( tan ` ( ( k x. _pi ) / N ) ) ) |
90 |
80 21 88 89
|
lt2sqd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) < ( tan ` ( ( k x. _pi ) / N ) ) <-> ( ( ( k x. _pi ) / N ) ^ 2 ) < ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
91 |
83 90
|
mpbid |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) < ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) |
92 |
81 44 91
|
ltled |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) <_ ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) |
93 |
78 92
|
eqbrtrd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) <_ ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) |
94 |
17 51 43 93
|
lediv23d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) <_ ( k ^ -u 2 ) ) |
95 |
48 94
|
eqbrtrd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) <_ ( k ^ -u 2 ) ) |
96 |
7 28 33 95
|
fsumle |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) <_ sum_ k e. ( 1 ... M ) ( k ^ -u 2 ) ) |
97 |
|
oveq2 |
|- ( n = M -> ( 2 x. n ) = ( 2 x. M ) ) |
98 |
97
|
oveq1d |
|- ( n = M -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. M ) + 1 ) ) |
99 |
98 6
|
eqtr4di |
|- ( n = M -> ( ( 2 x. n ) + 1 ) = N ) |
100 |
99
|
oveq2d |
|- ( n = M -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / N ) ) |
101 |
100
|
oveq2d |
|- ( n = M -> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( 1 - ( 1 / N ) ) ) |
102 |
101
|
oveq2d |
|- ( n = M -> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) ) |
103 |
100
|
oveq2d |
|- ( n = M -> ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( -u 2 x. ( 1 / N ) ) ) |
104 |
103
|
oveq2d |
|- ( n = M -> ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) |
105 |
102 104
|
oveq12d |
|- ( n = M -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) ) |
106 |
|
nnex |
|- NN e. _V |
107 |
106
|
a1i |
|- ( T. -> NN e. _V ) |
108 |
|
ovexd |
|- ( ( T. /\ n e. NN ) -> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) e. _V ) |
109 |
|
ovexd |
|- ( ( T. /\ n e. NN ) -> ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) e. _V ) |
110 |
8
|
resqcli |
|- ( _pi ^ 2 ) e. RR |
111 |
|
6re |
|- 6 e. RR |
112 |
|
6nn |
|- 6 e. NN |
113 |
112
|
nnne0i |
|- 6 =/= 0 |
114 |
110 111 113
|
redivcli |
|- ( ( _pi ^ 2 ) / 6 ) e. RR |
115 |
114
|
a1i |
|- ( ( T. /\ n e. NN ) -> ( ( _pi ^ 2 ) / 6 ) e. RR ) |
116 |
|
ovexd |
|- ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V ) |
117 |
|
fconstmpt |
|- ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) = ( n e. NN |-> ( ( _pi ^ 2 ) / 6 ) ) |
118 |
117
|
a1i |
|- ( T. -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) = ( n e. NN |-> ( ( _pi ^ 2 ) / 6 ) ) ) |
119 |
|
1zzd |
|- ( ( T. /\ n e. NN ) -> 1 e. ZZ ) |
120 |
|
ovexd |
|- ( ( T. /\ n e. NN ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. _V ) |
121 |
|
fconstmpt |
|- ( NN X. { 1 } ) = ( n e. NN |-> 1 ) |
122 |
121
|
a1i |
|- ( T. -> ( NN X. { 1 } ) = ( n e. NN |-> 1 ) ) |
123 |
1
|
a1i |
|- ( T. -> G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) |
124 |
107 119 120 122 123
|
offval2 |
|- ( T. -> ( ( NN X. { 1 } ) oF - G ) = ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
125 |
107 115 116 118 124
|
offval2 |
|- ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) = ( n e. NN |-> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
126 |
3 125
|
syl5eq |
|- ( T. -> H = ( n e. NN |-> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
127 |
|
ovexd |
|- ( ( T. /\ n e. NN ) -> ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V ) |
128 |
54
|
negcli |
|- -u 2 e. CC |
129 |
128
|
a1i |
|- ( ( T. /\ n e. NN ) -> -u 2 e. CC ) |
130 |
|
fconstmpt |
|- ( NN X. { -u 2 } ) = ( n e. NN |-> -u 2 ) |
131 |
130
|
a1i |
|- ( T. -> ( NN X. { -u 2 } ) = ( n e. NN |-> -u 2 ) ) |
132 |
107 129 120 131 123
|
offval2 |
|- ( T. -> ( ( NN X. { -u 2 } ) oF x. G ) = ( n e. NN |-> ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
133 |
107 119 127 122 132
|
offval2 |
|- ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) = ( n e. NN |-> ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
134 |
107 108 109 126 133
|
offval2 |
|- ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) ) |
135 |
134
|
mptru |
|- ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
136 |
4 135
|
eqtri |
|- J = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
137 |
|
ovex |
|- ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) e. _V |
138 |
105 136 137
|
fvmpt |
|- ( M e. NN -> ( J ` M ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) ) |
139 |
114
|
recni |
|- ( ( _pi ^ 2 ) / 6 ) e. CC |
140 |
139
|
a1i |
|- ( M e. NN -> ( ( _pi ^ 2 ) / 6 ) e. CC ) |
141 |
11
|
nncnd |
|- ( M e. NN -> ( 2 x. M ) e. CC ) |
142 |
141 68 69
|
divcld |
|- ( M e. NN -> ( ( 2 x. M ) / N ) e. CC ) |
143 |
|
ax-1cn |
|- 1 e. CC |
144 |
|
subcl |
|- ( ( ( 2 x. M ) e. CC /\ 1 e. CC ) -> ( ( 2 x. M ) - 1 ) e. CC ) |
145 |
141 143 144
|
sylancl |
|- ( M e. NN -> ( ( 2 x. M ) - 1 ) e. CC ) |
146 |
145 68 69
|
divcld |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) / N ) e. CC ) |
147 |
140 142 146
|
mulassd |
|- ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) ) ) |
148 |
|
1cnd |
|- ( M e. NN -> 1 e. CC ) |
149 |
68 148 68 69
|
divsubdird |
|- ( M e. NN -> ( ( N - 1 ) / N ) = ( ( N / N ) - ( 1 / N ) ) ) |
150 |
6
|
oveq1i |
|- ( N - 1 ) = ( ( ( 2 x. M ) + 1 ) - 1 ) |
151 |
|
pncan |
|- ( ( ( 2 x. M ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. M ) + 1 ) - 1 ) = ( 2 x. M ) ) |
152 |
141 143 151
|
sylancl |
|- ( M e. NN -> ( ( ( 2 x. M ) + 1 ) - 1 ) = ( 2 x. M ) ) |
153 |
150 152
|
syl5eq |
|- ( M e. NN -> ( N - 1 ) = ( 2 x. M ) ) |
154 |
153
|
oveq1d |
|- ( M e. NN -> ( ( N - 1 ) / N ) = ( ( 2 x. M ) / N ) ) |
155 |
68 69
|
dividd |
|- ( M e. NN -> ( N / N ) = 1 ) |
156 |
155
|
oveq1d |
|- ( M e. NN -> ( ( N / N ) - ( 1 / N ) ) = ( 1 - ( 1 / N ) ) ) |
157 |
149 154 156
|
3eqtr3rd |
|- ( M e. NN -> ( 1 - ( 1 / N ) ) = ( ( 2 x. M ) / N ) ) |
158 |
157
|
oveq2d |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) ) |
159 |
128
|
a1i |
|- ( M e. NN -> -u 2 e. CC ) |
160 |
68 159 68 69
|
divdird |
|- ( M e. NN -> ( ( N + -u 2 ) / N ) = ( ( N / N ) + ( -u 2 / N ) ) ) |
161 |
|
negsub |
|- ( ( N e. CC /\ 2 e. CC ) -> ( N + -u 2 ) = ( N - 2 ) ) |
162 |
68 54 161
|
sylancl |
|- ( M e. NN -> ( N + -u 2 ) = ( N - 2 ) ) |
163 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
164 |
6 163
|
oveq12i |
|- ( N - 2 ) = ( ( ( 2 x. M ) + 1 ) - ( 1 + 1 ) ) |
165 |
141 148 148
|
pnpcan2d |
|- ( M e. NN -> ( ( ( 2 x. M ) + 1 ) - ( 1 + 1 ) ) = ( ( 2 x. M ) - 1 ) ) |
166 |
164 165
|
syl5eq |
|- ( M e. NN -> ( N - 2 ) = ( ( 2 x. M ) - 1 ) ) |
167 |
162 166
|
eqtrd |
|- ( M e. NN -> ( N + -u 2 ) = ( ( 2 x. M ) - 1 ) ) |
168 |
167
|
oveq1d |
|- ( M e. NN -> ( ( N + -u 2 ) / N ) = ( ( ( 2 x. M ) - 1 ) / N ) ) |
169 |
159 68 69
|
divrecd |
|- ( M e. NN -> ( -u 2 / N ) = ( -u 2 x. ( 1 / N ) ) ) |
170 |
155 169
|
oveq12d |
|- ( M e. NN -> ( ( N / N ) + ( -u 2 / N ) ) = ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) |
171 |
160 168 170
|
3eqtr3rd |
|- ( M e. NN -> ( 1 + ( -u 2 x. ( 1 / N ) ) ) = ( ( ( 2 x. M ) - 1 ) / N ) ) |
172 |
158 171
|
oveq12d |
|- ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) ) |
173 |
13
|
nnsqcld |
|- ( M e. NN -> ( N ^ 2 ) e. NN ) |
174 |
173
|
nncnd |
|- ( M e. NN -> ( N ^ 2 ) e. CC ) |
175 |
|
6cn |
|- 6 e. CC |
176 |
|
mulcom |
|- ( ( ( N ^ 2 ) e. CC /\ 6 e. CC ) -> ( ( N ^ 2 ) x. 6 ) = ( 6 x. ( N ^ 2 ) ) ) |
177 |
174 175 176
|
sylancl |
|- ( M e. NN -> ( ( N ^ 2 ) x. 6 ) = ( 6 x. ( N ^ 2 ) ) ) |
178 |
177
|
oveq2d |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) |
179 |
110
|
recni |
|- ( _pi ^ 2 ) e. CC |
180 |
179
|
a1i |
|- ( M e. NN -> ( _pi ^ 2 ) e. CC ) |
181 |
141 145
|
mulcld |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) |
182 |
173
|
nnne0d |
|- ( M e. NN -> ( N ^ 2 ) =/= 0 ) |
183 |
174 182
|
jca |
|- ( M e. NN -> ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) ) |
184 |
175 113
|
pm3.2i |
|- ( 6 e. CC /\ 6 =/= 0 ) |
185 |
184
|
a1i |
|- ( M e. NN -> ( 6 e. CC /\ 6 =/= 0 ) ) |
186 |
|
divmuldiv |
|- ( ( ( ( _pi ^ 2 ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) /\ ( ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) /\ ( 6 e. CC /\ 6 =/= 0 ) ) ) -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) ) |
187 |
180 181 183 185 186
|
syl22anc |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) ) |
188 |
|
divmuldiv |
|- ( ( ( ( _pi ^ 2 ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) /\ ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) ) ) -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) |
189 |
180 181 185 183 188
|
syl22anc |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) |
190 |
178 187 189
|
3eqtr4d |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) ) |
191 |
66
|
a1i |
|- ( M e. NN -> _pi e. CC ) |
192 |
191 68 69
|
sqdivd |
|- ( M e. NN -> ( ( _pi / N ) ^ 2 ) = ( ( _pi ^ 2 ) / ( N ^ 2 ) ) ) |
193 |
192
|
oveq1d |
|- ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) ) |
194 |
141 68 145 68 69 69
|
divmuldivd |
|- ( M e. NN -> ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N x. N ) ) ) |
195 |
68
|
sqvald |
|- ( M e. NN -> ( N ^ 2 ) = ( N x. N ) ) |
196 |
195
|
oveq2d |
|- ( M e. NN -> ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N x. N ) ) ) |
197 |
194 196
|
eqtr4d |
|- ( M e. NN -> ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) |
198 |
197
|
oveq2d |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) ) |
199 |
190 193 198
|
3eqtr4d |
|- ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) ) ) |
200 |
147 172 199
|
3eqtr4d |
|- ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) ) |
201 |
|
eqid |
|- ( x e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( x ^ j ) ) ) = ( x e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( x ^ j ) ) ) |
202 |
|
eqid |
|- ( n e. ( 1 ... M ) |-> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) = ( n e. ( 1 ... M ) |-> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) |
203 |
6 201 202
|
basellem5 |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |
204 |
203
|
oveq2d |
|- ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) ) |
205 |
200 204
|
eqtr4d |
|- ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) = ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
206 |
27
|
recnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. CC ) |
207 |
7 40 206
|
fsummulc2 |
|- ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
208 |
138 205 207
|
3eqtrd |
|- ( M e. NN -> ( J ` M ) = sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
209 |
2
|
fveq1i |
|- ( F ` M ) = ( seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) ` M ) |
210 |
|
oveq1 |
|- ( n = k -> ( n ^ -u 2 ) = ( k ^ -u 2 ) ) |
211 |
|
eqid |
|- ( n e. NN |-> ( n ^ -u 2 ) ) = ( n e. NN |-> ( n ^ -u 2 ) ) |
212 |
|
ovex |
|- ( k ^ -u 2 ) e. _V |
213 |
210 211 212
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) = ( k ^ -u 2 ) ) |
214 |
30 213
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) = ( k ^ -u 2 ) ) |
215 |
|
id |
|- ( M e. NN -> M e. NN ) |
216 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
217 |
215 216
|
eleqtrdi |
|- ( M e. NN -> M e. ( ZZ>= ` 1 ) ) |
218 |
214 217 63
|
fsumser |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( k ^ -u 2 ) = ( seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) ` M ) ) |
219 |
209 218
|
eqtr4id |
|- ( M e. NN -> ( F ` M ) = sum_ k e. ( 1 ... M ) ( k ^ -u 2 ) ) |
220 |
96 208 219
|
3brtr4d |
|- ( M e. NN -> ( J ` M ) <_ ( F ` M ) ) |
221 |
80
|
resincld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) e. RR ) |
222 |
|
sincosq1sgn |
|- ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` ( ( k x. _pi ) / N ) ) /\ 0 < ( cos ` ( ( k x. _pi ) / N ) ) ) ) |
223 |
18 222
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 0 < ( sin ` ( ( k x. _pi ) / N ) ) /\ 0 < ( cos ` ( ( k x. _pi ) / N ) ) ) ) |
224 |
223
|
simpld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 < ( sin ` ( ( k x. _pi ) / N ) ) ) |
225 |
224
|
gt0ne0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) =/= 0 ) |
226 |
221 225 26
|
reexpclzd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. RR ) |
227 |
17 226
|
remulcld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) e. RR ) |
228 |
|
sinltx |
|- ( ( ( k x. _pi ) / N ) e. RR+ -> ( sin ` ( ( k x. _pi ) / N ) ) < ( ( k x. _pi ) / N ) ) |
229 |
87 228
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) < ( ( k x. _pi ) / N ) ) |
230 |
221 80 229
|
ltled |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) <_ ( ( k x. _pi ) / N ) ) |
231 |
|
0re |
|- 0 e. RR |
232 |
|
ltle |
|- ( ( 0 e. RR /\ ( sin ` ( ( k x. _pi ) / N ) ) e. RR ) -> ( 0 < ( sin ` ( ( k x. _pi ) / N ) ) -> 0 <_ ( sin ` ( ( k x. _pi ) / N ) ) ) ) |
233 |
231 221 232
|
sylancr |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 0 < ( sin ` ( ( k x. _pi ) / N ) ) -> 0 <_ ( sin ` ( ( k x. _pi ) / N ) ) ) ) |
234 |
224 233
|
mpd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 <_ ( sin ` ( ( k x. _pi ) / N ) ) ) |
235 |
221 80 234 88
|
le2sqd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) <_ ( ( k x. _pi ) / N ) <-> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( k x. _pi ) / N ) ^ 2 ) ) ) |
236 |
230 235
|
mpbid |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( k x. _pi ) / N ) ^ 2 ) ) |
237 |
236 78
|
breqtrrd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) ) |
238 |
221
|
resqcld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR ) |
239 |
238 17 51
|
lemuldiv2d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k ^ -u 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) <_ ( ( _pi / N ) ^ 2 ) <-> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) ) ) |
240 |
221 224
|
elrpd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) e. RR+ ) |
241 |
|
rpexpcl |
|- ( ( ( sin ` ( ( k x. _pi ) / N ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) |
242 |
240 23 241
|
sylancl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) |
243 |
33 17 242
|
lemuldivd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k ^ -u 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) <_ ( ( _pi / N ) ^ 2 ) <-> ( k ^ -u 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
244 |
239 243
|
bitr3d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) <-> ( k ^ -u 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
245 |
237 244
|
mpbid |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
246 |
221
|
recnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) e. CC ) |
247 |
|
expneg |
|- ( ( ( sin ` ( ( k x. _pi ) / N ) ) e. CC /\ 2 e. NN0 ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
248 |
246 35 247
|
sylancl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
249 |
248
|
oveq2d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
250 |
238
|
recnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. CC ) |
251 |
242
|
rpne0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 ) |
252 |
41 250 251
|
divrecd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
253 |
249 252
|
eqtr4d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
254 |
245 253
|
breqtrrd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) <_ ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
255 |
7 33 227 254
|
fsumle |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( k ^ -u 2 ) <_ sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
256 |
100
|
oveq2d |
|- ( n = M -> ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( 1 + ( 1 / N ) ) ) |
257 |
102 256
|
oveq12d |
|- ( n = M -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) ) |
258 |
|
ovexd |
|- ( ( T. /\ n e. NN ) -> ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V ) |
259 |
107 119 120 122 123
|
offval2 |
|- ( T. -> ( ( NN X. { 1 } ) oF + G ) = ( n e. NN |-> ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
260 |
107 108 258 126 259
|
offval2 |
|- ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
261 |
260
|
mptru |
|- ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
262 |
5 261
|
eqtri |
|- K = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
263 |
|
ovex |
|- ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) e. _V |
264 |
257 262 263
|
fvmpt |
|- ( M e. NN -> ( K ` M ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) ) |
265 |
|
peano2cn |
|- ( N e. CC -> ( N + 1 ) e. CC ) |
266 |
68 265
|
syl |
|- ( M e. NN -> ( N + 1 ) e. CC ) |
267 |
266 68 69
|
divcld |
|- ( M e. NN -> ( ( N + 1 ) / N ) e. CC ) |
268 |
140 142 267
|
mulassd |
|- ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) x. ( ( N + 1 ) / N ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) ) ) |
269 |
68 148 68 69
|
divdird |
|- ( M e. NN -> ( ( N + 1 ) / N ) = ( ( N / N ) + ( 1 / N ) ) ) |
270 |
155
|
oveq1d |
|- ( M e. NN -> ( ( N / N ) + ( 1 / N ) ) = ( 1 + ( 1 / N ) ) ) |
271 |
269 270
|
eqtr2d |
|- ( M e. NN -> ( 1 + ( 1 / N ) ) = ( ( N + 1 ) / N ) ) |
272 |
158 271
|
oveq12d |
|- ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) x. ( ( N + 1 ) / N ) ) ) |
273 |
177
|
oveq2d |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) |
274 |
141 266
|
mulcld |
|- ( M e. NN -> ( ( 2 x. M ) x. ( N + 1 ) ) e. CC ) |
275 |
|
divmuldiv |
|- ( ( ( ( _pi ^ 2 ) e. CC /\ ( ( 2 x. M ) x. ( N + 1 ) ) e. CC ) /\ ( ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) /\ ( 6 e. CC /\ 6 =/= 0 ) ) ) -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) ) |
276 |
180 274 183 185 275
|
syl22anc |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) ) |
277 |
|
divmuldiv |
|- ( ( ( ( _pi ^ 2 ) e. CC /\ ( ( 2 x. M ) x. ( N + 1 ) ) e. CC ) /\ ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) ) ) -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) |
278 |
180 274 185 183 277
|
syl22anc |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) |
279 |
273 276 278
|
3eqtr4d |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) ) |
280 |
80
|
recoscld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( cos ` ( ( k x. _pi ) / N ) ) e. RR ) |
281 |
280
|
recnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( cos ` ( ( k x. _pi ) / N ) ) e. CC ) |
282 |
281
|
sqcld |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. CC ) |
283 |
250 282 250 251
|
divdird |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) + ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) + ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
284 |
80
|
recnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. CC ) |
285 |
|
sincossq |
|- ( ( ( k x. _pi ) / N ) e. CC -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) + ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = 1 ) |
286 |
284 285
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) + ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = 1 ) |
287 |
286
|
oveq1d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) + ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
288 |
250 251
|
dividd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = 1 ) |
289 |
223
|
simprd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 < ( cos ` ( ( k x. _pi ) / N ) ) ) |
290 |
289
|
gt0ne0d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( cos ` ( ( k x. _pi ) / N ) ) =/= 0 ) |
291 |
|
tanval |
|- ( ( ( ( k x. _pi ) / N ) e. CC /\ ( cos ` ( ( k x. _pi ) / N ) ) =/= 0 ) -> ( tan ` ( ( k x. _pi ) / N ) ) = ( ( sin ` ( ( k x. _pi ) / N ) ) / ( cos ` ( ( k x. _pi ) / N ) ) ) ) |
292 |
284 290 291
|
syl2anc |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) = ( ( sin ` ( ( k x. _pi ) / N ) ) / ( cos ` ( ( k x. _pi ) / N ) ) ) ) |
293 |
292
|
oveq1d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) = ( ( ( sin ` ( ( k x. _pi ) / N ) ) / ( cos ` ( ( k x. _pi ) / N ) ) ) ^ 2 ) ) |
294 |
246 281 290
|
sqdivd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) / ( cos ` ( ( k x. _pi ) / N ) ) ) ^ 2 ) = ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
295 |
293 294
|
eqtrd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) = ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
296 |
295
|
oveq2d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( 1 / ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) |
297 |
|
sqne0 |
|- ( ( cos ` ( ( k x. _pi ) / N ) ) e. CC -> ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 <-> ( cos ` ( ( k x. _pi ) / N ) ) =/= 0 ) ) |
298 |
281 297
|
syl |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 <-> ( cos ` ( ( k x. _pi ) / N ) ) =/= 0 ) ) |
299 |
290 298
|
mpbird |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 ) |
300 |
250 282 251 299
|
recdivd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 / ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) = ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) |
301 |
37 296 300
|
3eqtrrd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) |
302 |
288 301
|
oveq12d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) + ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) = ( 1 + ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
303 |
283 287 302
|
3eqtr3d |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( 1 + ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
304 |
|
addcom |
|- ( ( 1 e. CC /\ ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. CC ) -> ( 1 + ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) ) |
305 |
143 206 304
|
sylancr |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 + ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) ) |
306 |
248 303 305
|
3eqtrd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) ) |
307 |
306
|
sumeq2dv |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = sum_ k e. ( 1 ... M ) ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) ) |
308 |
|
1cnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 1 e. CC ) |
309 |
7 206 308
|
fsumadd |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) = ( sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + sum_ k e. ( 1 ... M ) 1 ) ) |
310 |
|
fsumconst |
|- ( ( ( 1 ... M ) e. Fin /\ 1 e. CC ) -> sum_ k e. ( 1 ... M ) 1 = ( ( # ` ( 1 ... M ) ) x. 1 ) ) |
311 |
7 143 310
|
sylancl |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) 1 = ( ( # ` ( 1 ... M ) ) x. 1 ) ) |
312 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
313 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
314 |
312 313
|
syl |
|- ( M e. NN -> ( # ` ( 1 ... M ) ) = M ) |
315 |
314
|
oveq1d |
|- ( M e. NN -> ( ( # ` ( 1 ... M ) ) x. 1 ) = ( M x. 1 ) ) |
316 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
317 |
316
|
mulid1d |
|- ( M e. NN -> ( M x. 1 ) = M ) |
318 |
311 315 317
|
3eqtrd |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) 1 = M ) |
319 |
203 318
|
oveq12d |
|- ( M e. NN -> ( sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + sum_ k e. ( 1 ... M ) 1 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + M ) ) |
320 |
307 309 319
|
3eqtrd |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + M ) ) |
321 |
|
3cn |
|- 3 e. CC |
322 |
321
|
a1i |
|- ( M e. NN -> 3 e. CC ) |
323 |
141 145 322
|
adddid |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( ( 2 x. M ) - 1 ) + 3 ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( ( 2 x. M ) x. 3 ) ) ) |
324 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
325 |
324
|
oveq1i |
|- ( 3 - 1 ) = ( ( 2 + 1 ) - 1 ) |
326 |
54 143
|
pncan3oi |
|- ( ( 2 + 1 ) - 1 ) = 2 |
327 |
325 326 163
|
3eqtri |
|- ( 3 - 1 ) = ( 1 + 1 ) |
328 |
327
|
oveq2i |
|- ( ( 2 x. M ) + ( 3 - 1 ) ) = ( ( 2 x. M ) + ( 1 + 1 ) ) |
329 |
141 148 322
|
subadd23d |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) + 3 ) = ( ( 2 x. M ) + ( 3 - 1 ) ) ) |
330 |
141 148 148
|
addassd |
|- ( M e. NN -> ( ( ( 2 x. M ) + 1 ) + 1 ) = ( ( 2 x. M ) + ( 1 + 1 ) ) ) |
331 |
328 329 330
|
3eqtr4a |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) + 3 ) = ( ( ( 2 x. M ) + 1 ) + 1 ) ) |
332 |
6
|
oveq1i |
|- ( N + 1 ) = ( ( ( 2 x. M ) + 1 ) + 1 ) |
333 |
331 332
|
eqtr4di |
|- ( M e. NN -> ( ( ( 2 x. M ) - 1 ) + 3 ) = ( N + 1 ) ) |
334 |
333
|
oveq2d |
|- ( M e. NN -> ( ( 2 x. M ) x. ( ( ( 2 x. M ) - 1 ) + 3 ) ) = ( ( 2 x. M ) x. ( N + 1 ) ) ) |
335 |
|
2cnd |
|- ( M e. NN -> 2 e. CC ) |
336 |
335 316 322
|
mul32d |
|- ( M e. NN -> ( ( 2 x. M ) x. 3 ) = ( ( 2 x. 3 ) x. M ) ) |
337 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
338 |
321 54
|
mulcomi |
|- ( 3 x. 2 ) = ( 2 x. 3 ) |
339 |
337 338
|
eqtr3i |
|- 6 = ( 2 x. 3 ) |
340 |
339
|
oveq1i |
|- ( 6 x. M ) = ( ( 2 x. 3 ) x. M ) |
341 |
336 340
|
eqtr4di |
|- ( M e. NN -> ( ( 2 x. M ) x. 3 ) = ( 6 x. M ) ) |
342 |
341
|
oveq2d |
|- ( M e. NN -> ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( ( 2 x. M ) x. 3 ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( 6 x. M ) ) ) |
343 |
323 334 342
|
3eqtr3d |
|- ( M e. NN -> ( ( 2 x. M ) x. ( N + 1 ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( 6 x. M ) ) ) |
344 |
343
|
oveq1d |
|- ( M e. NN -> ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( 6 x. M ) ) / 6 ) ) |
345 |
|
mulcl |
|- ( ( 6 e. CC /\ M e. CC ) -> ( 6 x. M ) e. CC ) |
346 |
175 316 345
|
sylancr |
|- ( M e. NN -> ( 6 x. M ) e. CC ) |
347 |
175
|
a1i |
|- ( M e. NN -> 6 e. CC ) |
348 |
113
|
a1i |
|- ( M e. NN -> 6 =/= 0 ) |
349 |
181 346 347 348
|
divdird |
|- ( M e. NN -> ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( 6 x. M ) ) / 6 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + ( ( 6 x. M ) / 6 ) ) ) |
350 |
316 347 348
|
divcan3d |
|- ( M e. NN -> ( ( 6 x. M ) / 6 ) = M ) |
351 |
350
|
oveq2d |
|- ( M e. NN -> ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + ( ( 6 x. M ) / 6 ) ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + M ) ) |
352 |
344 349 351
|
3eqtrd |
|- ( M e. NN -> ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + M ) ) |
353 |
320 352
|
eqtr4d |
|- ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) |
354 |
192 353
|
oveq12d |
|- ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) ) |
355 |
141 68 266 68 69 69
|
divmuldivd |
|- ( M e. NN -> ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) = ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N x. N ) ) ) |
356 |
195
|
oveq2d |
|- ( M e. NN -> ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) = ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N x. N ) ) ) |
357 |
355 356
|
eqtr4d |
|- ( M e. NN -> ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) = ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) |
358 |
357
|
oveq2d |
|- ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) ) |
359 |
279 354 358
|
3eqtr4d |
|- ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) ) ) |
360 |
268 272 359
|
3eqtr4d |
|- ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) = ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
361 |
226
|
recnd |
|- ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. CC ) |
362 |
7 40 361
|
fsummulc2 |
|- ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
363 |
264 360 362
|
3eqtrd |
|- ( M e. NN -> ( K ` M ) = sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) |
364 |
255 219 363
|
3brtr4d |
|- ( M e. NN -> ( F ` M ) <_ ( K ` M ) ) |
365 |
220 364
|
jca |
|- ( M e. NN -> ( ( J ` M ) <_ ( F ` M ) /\ ( F ` M ) <_ ( K ` M ) ) ) |