| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basel.g |
|- G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
| 2 |
|
basel.f |
|- F = seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) |
| 3 |
|
basel.h |
|- H = ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) |
| 4 |
|
basel.j |
|- J = ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) |
| 5 |
|
basel.k |
|- K = ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) |
| 6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 7 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 8 |
|
oveq1 |
|- ( n = k -> ( n ^ -u 2 ) = ( k ^ -u 2 ) ) |
| 9 |
|
eqid |
|- ( n e. NN |-> ( n ^ -u 2 ) ) = ( n e. NN |-> ( n ^ -u 2 ) ) |
| 10 |
|
ovex |
|- ( k ^ -u 2 ) e. _V |
| 11 |
8 9 10
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) = ( k ^ -u 2 ) ) |
| 12 |
11
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) = ( k ^ -u 2 ) ) |
| 13 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 14 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
| 15 |
|
2z |
|- 2 e. ZZ |
| 16 |
|
znegcl |
|- ( 2 e. ZZ -> -u 2 e. ZZ ) |
| 17 |
15 16
|
ax-mp |
|- -u 2 e. ZZ |
| 18 |
17
|
a1i |
|- ( n e. NN -> -u 2 e. ZZ ) |
| 19 |
13 14 18
|
reexpclzd |
|- ( n e. NN -> ( n ^ -u 2 ) e. RR ) |
| 20 |
19
|
adantl |
|- ( ( T. /\ n e. NN ) -> ( n ^ -u 2 ) e. RR ) |
| 21 |
20 9
|
fmptd |
|- ( T. -> ( n e. NN |-> ( n ^ -u 2 ) ) : NN --> RR ) |
| 22 |
21
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) e. RR ) |
| 23 |
12 22
|
eqeltrrd |
|- ( ( T. /\ k e. NN ) -> ( k ^ -u 2 ) e. RR ) |
| 24 |
23
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( k ^ -u 2 ) e. CC ) |
| 25 |
6 7 22
|
serfre |
|- ( T. -> seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) : NN --> RR ) |
| 26 |
2
|
feq1i |
|- ( F : NN --> RR <-> seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) : NN --> RR ) |
| 27 |
25 26
|
sylibr |
|- ( T. -> F : NN --> RR ) |
| 28 |
27
|
ffvelcdmda |
|- ( ( T. /\ n e. NN ) -> ( F ` n ) e. RR ) |
| 29 |
28
|
recnd |
|- ( ( T. /\ n e. NN ) -> ( F ` n ) e. CC ) |
| 30 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
| 31 |
30
|
adantl |
|- ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 32 |
|
ovex |
|- ( ( _pi ^ 2 ) / 6 ) e. _V |
| 33 |
32
|
fconst |
|- ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) : NN --> { ( ( _pi ^ 2 ) / 6 ) } |
| 34 |
|
pire |
|- _pi e. RR |
| 35 |
34
|
resqcli |
|- ( _pi ^ 2 ) e. RR |
| 36 |
|
6re |
|- 6 e. RR |
| 37 |
|
6nn |
|- 6 e. NN |
| 38 |
37
|
nnne0i |
|- 6 =/= 0 |
| 39 |
35 36 38
|
redivcli |
|- ( ( _pi ^ 2 ) / 6 ) e. RR |
| 40 |
39
|
a1i |
|- ( T. -> ( ( _pi ^ 2 ) / 6 ) e. RR ) |
| 41 |
40
|
snssd |
|- ( T. -> { ( ( _pi ^ 2 ) / 6 ) } C_ RR ) |
| 42 |
|
fss |
|- ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) : NN --> { ( ( _pi ^ 2 ) / 6 ) } /\ { ( ( _pi ^ 2 ) / 6 ) } C_ RR ) -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) : NN --> RR ) |
| 43 |
33 41 42
|
sylancr |
|- ( T. -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) : NN --> RR ) |
| 44 |
|
resubcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x - y ) e. RR ) |
| 45 |
44
|
adantl |
|- ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x - y ) e. RR ) |
| 46 |
|
1ex |
|- 1 e. _V |
| 47 |
46
|
fconst |
|- ( NN X. { 1 } ) : NN --> { 1 } |
| 48 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 49 |
48
|
snssd |
|- ( T. -> { 1 } C_ RR ) |
| 50 |
|
fss |
|- ( ( ( NN X. { 1 } ) : NN --> { 1 } /\ { 1 } C_ RR ) -> ( NN X. { 1 } ) : NN --> RR ) |
| 51 |
47 49 50
|
sylancr |
|- ( T. -> ( NN X. { 1 } ) : NN --> RR ) |
| 52 |
|
2nn |
|- 2 e. NN |
| 53 |
52
|
a1i |
|- ( T. -> 2 e. NN ) |
| 54 |
|
nnmulcl |
|- ( ( 2 e. NN /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
| 55 |
53 54
|
sylan |
|- ( ( T. /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
| 56 |
55
|
peano2nnd |
|- ( ( T. /\ n e. NN ) -> ( ( 2 x. n ) + 1 ) e. NN ) |
| 57 |
56
|
nnrecred |
|- ( ( T. /\ n e. NN ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) |
| 58 |
57 1
|
fmptd |
|- ( T. -> G : NN --> RR ) |
| 59 |
|
nnex |
|- NN e. _V |
| 60 |
59
|
a1i |
|- ( T. -> NN e. _V ) |
| 61 |
|
inidm |
|- ( NN i^i NN ) = NN |
| 62 |
45 51 58 60 60 61
|
off |
|- ( T. -> ( ( NN X. { 1 } ) oF - G ) : NN --> RR ) |
| 63 |
31 43 62 60 60 61
|
off |
|- ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) : NN --> RR ) |
| 64 |
3
|
feq1i |
|- ( H : NN --> RR <-> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) : NN --> RR ) |
| 65 |
63 64
|
sylibr |
|- ( T. -> H : NN --> RR ) |
| 66 |
|
readdcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
| 67 |
66
|
adantl |
|- ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
| 68 |
|
negex |
|- -u 2 e. _V |
| 69 |
68
|
fconst |
|- ( NN X. { -u 2 } ) : NN --> { -u 2 } |
| 70 |
17
|
zrei |
|- -u 2 e. RR |
| 71 |
70
|
a1i |
|- ( T. -> -u 2 e. RR ) |
| 72 |
71
|
snssd |
|- ( T. -> { -u 2 } C_ RR ) |
| 73 |
|
fss |
|- ( ( ( NN X. { -u 2 } ) : NN --> { -u 2 } /\ { -u 2 } C_ RR ) -> ( NN X. { -u 2 } ) : NN --> RR ) |
| 74 |
69 72 73
|
sylancr |
|- ( T. -> ( NN X. { -u 2 } ) : NN --> RR ) |
| 75 |
31 74 58 60 60 61
|
off |
|- ( T. -> ( ( NN X. { -u 2 } ) oF x. G ) : NN --> RR ) |
| 76 |
67 51 75 60 60 61
|
off |
|- ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) : NN --> RR ) |
| 77 |
31 65 76 60 60 61
|
off |
|- ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) : NN --> RR ) |
| 78 |
4
|
feq1i |
|- ( J : NN --> RR <-> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) : NN --> RR ) |
| 79 |
77 78
|
sylibr |
|- ( T. -> J : NN --> RR ) |
| 80 |
79
|
ffvelcdmda |
|- ( ( T. /\ n e. NN ) -> ( J ` n ) e. RR ) |
| 81 |
80
|
recnd |
|- ( ( T. /\ n e. NN ) -> ( J ` n ) e. CC ) |
| 82 |
29 81
|
npcand |
|- ( ( T. /\ n e. NN ) -> ( ( ( F ` n ) - ( J ` n ) ) + ( J ` n ) ) = ( F ` n ) ) |
| 83 |
82
|
mpteq2dva |
|- ( T. -> ( n e. NN |-> ( ( ( F ` n ) - ( J ` n ) ) + ( J ` n ) ) ) = ( n e. NN |-> ( F ` n ) ) ) |
| 84 |
|
ovexd |
|- ( ( T. /\ n e. NN ) -> ( ( F ` n ) - ( J ` n ) ) e. _V ) |
| 85 |
27
|
feqmptd |
|- ( T. -> F = ( n e. NN |-> ( F ` n ) ) ) |
| 86 |
79
|
feqmptd |
|- ( T. -> J = ( n e. NN |-> ( J ` n ) ) ) |
| 87 |
60 28 80 85 86
|
offval2 |
|- ( T. -> ( F oF - J ) = ( n e. NN |-> ( ( F ` n ) - ( J ` n ) ) ) ) |
| 88 |
60 84 80 87 86
|
offval2 |
|- ( T. -> ( ( F oF - J ) oF + J ) = ( n e. NN |-> ( ( ( F ` n ) - ( J ` n ) ) + ( J ` n ) ) ) ) |
| 89 |
83 88 85
|
3eqtr4d |
|- ( T. -> ( ( F oF - J ) oF + J ) = F ) |
| 90 |
67 51 58 60 60 61
|
off |
|- ( T. -> ( ( NN X. { 1 } ) oF + G ) : NN --> RR ) |
| 91 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 92 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 93 |
|
recn |
|- ( z e. RR -> z e. CC ) |
| 94 |
|
subdi |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
| 95 |
91 92 93 94
|
syl3an |
|- ( ( x e. RR /\ y e. RR /\ z e. RR ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
| 96 |
95
|
adantl |
|- ( ( T. /\ ( x e. RR /\ y e. RR /\ z e. RR ) ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
| 97 |
60 65 90 76 96
|
caofdi |
|- ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) = ( ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) oF - ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) ) |
| 98 |
5 4
|
oveq12i |
|- ( K oF - J ) = ( ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) oF - ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) |
| 99 |
97 98
|
eqtr4di |
|- ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) = ( K oF - J ) ) |
| 100 |
39
|
recni |
|- ( ( _pi ^ 2 ) / 6 ) e. CC |
| 101 |
6
|
eqimss2i |
|- ( ZZ>= ` 1 ) C_ NN |
| 102 |
101 59
|
climconst2 |
|- ( ( ( ( _pi ^ 2 ) / 6 ) e. CC /\ 1 e. ZZ ) -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ~~> ( ( _pi ^ 2 ) / 6 ) ) |
| 103 |
100 7 102
|
sylancr |
|- ( T. -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ~~> ( ( _pi ^ 2 ) / 6 ) ) |
| 104 |
|
ovexd |
|- ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) e. _V ) |
| 105 |
|
ax-resscn |
|- RR C_ CC |
| 106 |
|
fss |
|- ( ( ( NN X. { 1 } ) : NN --> RR /\ RR C_ CC ) -> ( NN X. { 1 } ) : NN --> CC ) |
| 107 |
51 105 106
|
sylancl |
|- ( T. -> ( NN X. { 1 } ) : NN --> CC ) |
| 108 |
|
fss |
|- ( ( G : NN --> RR /\ RR C_ CC ) -> G : NN --> CC ) |
| 109 |
58 105 108
|
sylancl |
|- ( T. -> G : NN --> CC ) |
| 110 |
|
ofnegsub |
|- ( ( NN e. _V /\ ( NN X. { 1 } ) : NN --> CC /\ G : NN --> CC ) -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 1 } ) oF x. G ) ) = ( ( NN X. { 1 } ) oF - G ) ) |
| 111 |
59 107 109 110
|
mp3an2i |
|- ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 1 } ) oF x. G ) ) = ( ( NN X. { 1 } ) oF - G ) ) |
| 112 |
|
neg1cn |
|- -u 1 e. CC |
| 113 |
1 112
|
basellem7 |
|- ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 1 } ) oF x. G ) ) ~~> 1 |
| 114 |
111 113
|
eqbrtrrdi |
|- ( T. -> ( ( NN X. { 1 } ) oF - G ) ~~> 1 ) |
| 115 |
43
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) e. RR ) |
| 116 |
115
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) e. CC ) |
| 117 |
62
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF - G ) ` k ) e. RR ) |
| 118 |
117
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF - G ) ` k ) e. CC ) |
| 119 |
43
|
ffnd |
|- ( T. -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) Fn NN ) |
| 120 |
|
fnconstg |
|- ( 1 e. ZZ -> ( NN X. { 1 } ) Fn NN ) |
| 121 |
7 120
|
syl |
|- ( T. -> ( NN X. { 1 } ) Fn NN ) |
| 122 |
58
|
ffnd |
|- ( T. -> G Fn NN ) |
| 123 |
121 122 60 60 61
|
offn |
|- ( T. -> ( ( NN X. { 1 } ) oF - G ) Fn NN ) |
| 124 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) = ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) ) |
| 125 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF - G ) ` k ) = ( ( ( NN X. { 1 } ) oF - G ) ` k ) ) |
| 126 |
119 123 60 60 61 124 125
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) ` k ) = ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) x. ( ( ( NN X. { 1 } ) oF - G ) ` k ) ) ) |
| 127 |
6 7 103 104 114 116 118 126
|
climmul |
|- ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) ~~> ( ( ( _pi ^ 2 ) / 6 ) x. 1 ) ) |
| 128 |
100
|
mulridi |
|- ( ( ( _pi ^ 2 ) / 6 ) x. 1 ) = ( ( _pi ^ 2 ) / 6 ) |
| 129 |
127 128
|
breqtrdi |
|- ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) ~~> ( ( _pi ^ 2 ) / 6 ) ) |
| 130 |
3 129
|
eqbrtrid |
|- ( T. -> H ~~> ( ( _pi ^ 2 ) / 6 ) ) |
| 131 |
|
ovexd |
|- ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) e. _V ) |
| 132 |
|
3cn |
|- 3 e. CC |
| 133 |
101 59
|
climconst2 |
|- ( ( 3 e. CC /\ 1 e. ZZ ) -> ( NN X. { 3 } ) ~~> 3 ) |
| 134 |
132 7 133
|
sylancr |
|- ( T. -> ( NN X. { 3 } ) ~~> 3 ) |
| 135 |
|
ovexd |
|- ( T. -> ( ( NN X. { 3 } ) oF x. G ) e. _V ) |
| 136 |
1
|
basellem6 |
|- G ~~> 0 |
| 137 |
136
|
a1i |
|- ( T. -> G ~~> 0 ) |
| 138 |
|
3ex |
|- 3 e. _V |
| 139 |
138
|
fconst |
|- ( NN X. { 3 } ) : NN --> { 3 } |
| 140 |
|
3re |
|- 3 e. RR |
| 141 |
140
|
a1i |
|- ( T. -> 3 e. RR ) |
| 142 |
141
|
snssd |
|- ( T. -> { 3 } C_ RR ) |
| 143 |
|
fss |
|- ( ( ( NN X. { 3 } ) : NN --> { 3 } /\ { 3 } C_ RR ) -> ( NN X. { 3 } ) : NN --> RR ) |
| 144 |
139 142 143
|
sylancr |
|- ( T. -> ( NN X. { 3 } ) : NN --> RR ) |
| 145 |
144
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { 3 } ) ` k ) e. RR ) |
| 146 |
145
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { 3 } ) ` k ) e. CC ) |
| 147 |
58
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 148 |
147
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. CC ) |
| 149 |
144
|
ffnd |
|- ( T. -> ( NN X. { 3 } ) Fn NN ) |
| 150 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( ( NN X. { 3 } ) ` k ) = ( ( NN X. { 3 } ) ` k ) ) |
| 151 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) = ( G ` k ) ) |
| 152 |
149 122 60 60 61 150 151
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 3 } ) oF x. G ) ` k ) = ( ( ( NN X. { 3 } ) ` k ) x. ( G ` k ) ) ) |
| 153 |
6 7 134 135 137 146 148 152
|
climmul |
|- ( T. -> ( ( NN X. { 3 } ) oF x. G ) ~~> ( 3 x. 0 ) ) |
| 154 |
132
|
mul01i |
|- ( 3 x. 0 ) = 0 |
| 155 |
153 154
|
breqtrdi |
|- ( T. -> ( ( NN X. { 3 } ) oF x. G ) ~~> 0 ) |
| 156 |
65
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) e. RR ) |
| 157 |
156
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) e. CC ) |
| 158 |
31 144 58 60 60 61
|
off |
|- ( T. -> ( ( NN X. { 3 } ) oF x. G ) : NN --> RR ) |
| 159 |
158
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 3 } ) oF x. G ) ` k ) e. RR ) |
| 160 |
159
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 3 } ) oF x. G ) ` k ) e. CC ) |
| 161 |
65
|
ffnd |
|- ( T. -> H Fn NN ) |
| 162 |
45 90 76 60 60 61
|
off |
|- ( T. -> ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) : NN --> RR ) |
| 163 |
162
|
ffnd |
|- ( T. -> ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) Fn NN ) |
| 164 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) = ( H ` k ) ) |
| 165 |
148
|
mullidd |
|- ( ( T. /\ k e. NN ) -> ( 1 x. ( G ` k ) ) = ( G ` k ) ) |
| 166 |
|
2cn |
|- 2 e. CC |
| 167 |
|
mulneg1 |
|- ( ( 2 e. CC /\ ( G ` k ) e. CC ) -> ( -u 2 x. ( G ` k ) ) = -u ( 2 x. ( G ` k ) ) ) |
| 168 |
166 148 167
|
sylancr |
|- ( ( T. /\ k e. NN ) -> ( -u 2 x. ( G ` k ) ) = -u ( 2 x. ( G ` k ) ) ) |
| 169 |
168
|
negeqd |
|- ( ( T. /\ k e. NN ) -> -u ( -u 2 x. ( G ` k ) ) = -u -u ( 2 x. ( G ` k ) ) ) |
| 170 |
|
mulcl |
|- ( ( 2 e. CC /\ ( G ` k ) e. CC ) -> ( 2 x. ( G ` k ) ) e. CC ) |
| 171 |
166 148 170
|
sylancr |
|- ( ( T. /\ k e. NN ) -> ( 2 x. ( G ` k ) ) e. CC ) |
| 172 |
171
|
negnegd |
|- ( ( T. /\ k e. NN ) -> -u -u ( 2 x. ( G ` k ) ) = ( 2 x. ( G ` k ) ) ) |
| 173 |
169 172
|
eqtr2d |
|- ( ( T. /\ k e. NN ) -> ( 2 x. ( G ` k ) ) = -u ( -u 2 x. ( G ` k ) ) ) |
| 174 |
165 173
|
oveq12d |
|- ( ( T. /\ k e. NN ) -> ( ( 1 x. ( G ` k ) ) + ( 2 x. ( G ` k ) ) ) = ( ( G ` k ) + -u ( -u 2 x. ( G ` k ) ) ) ) |
| 175 |
|
remulcl |
|- ( ( -u 2 e. RR /\ ( G ` k ) e. RR ) -> ( -u 2 x. ( G ` k ) ) e. RR ) |
| 176 |
70 147 175
|
sylancr |
|- ( ( T. /\ k e. NN ) -> ( -u 2 x. ( G ` k ) ) e. RR ) |
| 177 |
176
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( -u 2 x. ( G ` k ) ) e. CC ) |
| 178 |
148 177
|
negsubd |
|- ( ( T. /\ k e. NN ) -> ( ( G ` k ) + -u ( -u 2 x. ( G ` k ) ) ) = ( ( G ` k ) - ( -u 2 x. ( G ` k ) ) ) ) |
| 179 |
174 178
|
eqtrd |
|- ( ( T. /\ k e. NN ) -> ( ( 1 x. ( G ` k ) ) + ( 2 x. ( G ` k ) ) ) = ( ( G ` k ) - ( -u 2 x. ( G ` k ) ) ) ) |
| 180 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 181 |
|
ax-1cn |
|- 1 e. CC |
| 182 |
166 181
|
addcomi |
|- ( 2 + 1 ) = ( 1 + 2 ) |
| 183 |
180 182
|
eqtri |
|- 3 = ( 1 + 2 ) |
| 184 |
183
|
oveq1i |
|- ( 3 x. ( G ` k ) ) = ( ( 1 + 2 ) x. ( G ` k ) ) |
| 185 |
|
1cnd |
|- ( ( T. /\ k e. NN ) -> 1 e. CC ) |
| 186 |
166
|
a1i |
|- ( ( T. /\ k e. NN ) -> 2 e. CC ) |
| 187 |
185 186 148
|
adddird |
|- ( ( T. /\ k e. NN ) -> ( ( 1 + 2 ) x. ( G ` k ) ) = ( ( 1 x. ( G ` k ) ) + ( 2 x. ( G ` k ) ) ) ) |
| 188 |
184 187
|
eqtrid |
|- ( ( T. /\ k e. NN ) -> ( 3 x. ( G ` k ) ) = ( ( 1 x. ( G ` k ) ) + ( 2 x. ( G ` k ) ) ) ) |
| 189 |
185 148 177
|
pnpcand |
|- ( ( T. /\ k e. NN ) -> ( ( 1 + ( G ` k ) ) - ( 1 + ( -u 2 x. ( G ` k ) ) ) ) = ( ( G ` k ) - ( -u 2 x. ( G ` k ) ) ) ) |
| 190 |
179 188 189
|
3eqtr4rd |
|- ( ( T. /\ k e. NN ) -> ( ( 1 + ( G ` k ) ) - ( 1 + ( -u 2 x. ( G ` k ) ) ) ) = ( 3 x. ( G ` k ) ) ) |
| 191 |
121 122 60 60 61
|
offn |
|- ( T. -> ( ( NN X. { 1 } ) oF + G ) Fn NN ) |
| 192 |
17
|
a1i |
|- ( T. -> -u 2 e. ZZ ) |
| 193 |
|
fnconstg |
|- ( -u 2 e. ZZ -> ( NN X. { -u 2 } ) Fn NN ) |
| 194 |
192 193
|
syl |
|- ( T. -> ( NN X. { -u 2 } ) Fn NN ) |
| 195 |
194 122 60 60 61
|
offn |
|- ( T. -> ( ( NN X. { -u 2 } ) oF x. G ) Fn NN ) |
| 196 |
121 195 60 60 61
|
offn |
|- ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) Fn NN ) |
| 197 |
60 48 122 151
|
ofc1 |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + G ) ` k ) = ( 1 + ( G ` k ) ) ) |
| 198 |
60 71 122 151
|
ofc1 |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { -u 2 } ) oF x. G ) ` k ) = ( -u 2 x. ( G ` k ) ) ) |
| 199 |
60 48 195 198
|
ofc1 |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) = ( 1 + ( -u 2 x. ( G ` k ) ) ) ) |
| 200 |
191 196 60 60 61 197 199
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ` k ) = ( ( 1 + ( G ` k ) ) - ( 1 + ( -u 2 x. ( G ` k ) ) ) ) ) |
| 201 |
60 141 122 151
|
ofc1 |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 3 } ) oF x. G ) ` k ) = ( 3 x. ( G ` k ) ) ) |
| 202 |
190 200 201
|
3eqtr4d |
|- ( ( T. /\ k e. NN ) -> ( ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ` k ) = ( ( ( NN X. { 3 } ) oF x. G ) ` k ) ) |
| 203 |
161 163 60 60 61 164 202
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) ` k ) = ( ( H ` k ) x. ( ( ( NN X. { 3 } ) oF x. G ) ` k ) ) ) |
| 204 |
6 7 130 131 155 157 160 203
|
climmul |
|- ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) ~~> ( ( ( _pi ^ 2 ) / 6 ) x. 0 ) ) |
| 205 |
100
|
mul01i |
|- ( ( ( _pi ^ 2 ) / 6 ) x. 0 ) = 0 |
| 206 |
204 205
|
breqtrdi |
|- ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) ~~> 0 ) |
| 207 |
99 206
|
eqbrtrrd |
|- ( T. -> ( K oF - J ) ~~> 0 ) |
| 208 |
|
ovexd |
|- ( T. -> ( F oF - J ) e. _V ) |
| 209 |
31 65 90 60 60 61
|
off |
|- ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) : NN --> RR ) |
| 210 |
5
|
feq1i |
|- ( K : NN --> RR <-> ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) : NN --> RR ) |
| 211 |
209 210
|
sylibr |
|- ( T. -> K : NN --> RR ) |
| 212 |
45 211 79 60 60 61
|
off |
|- ( T. -> ( K oF - J ) : NN --> RR ) |
| 213 |
212
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( K oF - J ) ` k ) e. RR ) |
| 214 |
45 27 79 60 60 61
|
off |
|- ( T. -> ( F oF - J ) : NN --> RR ) |
| 215 |
214
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) e. RR ) |
| 216 |
27
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 217 |
211
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( K ` k ) e. RR ) |
| 218 |
79
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( J ` k ) e. RR ) |
| 219 |
|
eqid |
|- ( ( 2 x. k ) + 1 ) = ( ( 2 x. k ) + 1 ) |
| 220 |
1 2 3 4 5 219
|
basellem8 |
|- ( k e. NN -> ( ( J ` k ) <_ ( F ` k ) /\ ( F ` k ) <_ ( K ` k ) ) ) |
| 221 |
220
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( J ` k ) <_ ( F ` k ) /\ ( F ` k ) <_ ( K ` k ) ) ) |
| 222 |
221
|
simprd |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) <_ ( K ` k ) ) |
| 223 |
216 217 218 222
|
lesub1dd |
|- ( ( T. /\ k e. NN ) -> ( ( F ` k ) - ( J ` k ) ) <_ ( ( K ` k ) - ( J ` k ) ) ) |
| 224 |
27
|
ffnd |
|- ( T. -> F Fn NN ) |
| 225 |
79
|
ffnd |
|- ( T. -> J Fn NN ) |
| 226 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
| 227 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( J ` k ) = ( J ` k ) ) |
| 228 |
224 225 60 60 61 226 227
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) = ( ( F ` k ) - ( J ` k ) ) ) |
| 229 |
211
|
ffnd |
|- ( T. -> K Fn NN ) |
| 230 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( K ` k ) = ( K ` k ) ) |
| 231 |
229 225 60 60 61 230 227
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( K oF - J ) ` k ) = ( ( K ` k ) - ( J ` k ) ) ) |
| 232 |
223 228 231
|
3brtr4d |
|- ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) <_ ( ( K oF - J ) ` k ) ) |
| 233 |
221
|
simpld |
|- ( ( T. /\ k e. NN ) -> ( J ` k ) <_ ( F ` k ) ) |
| 234 |
216 218
|
subge0d |
|- ( ( T. /\ k e. NN ) -> ( 0 <_ ( ( F ` k ) - ( J ` k ) ) <-> ( J ` k ) <_ ( F ` k ) ) ) |
| 235 |
233 234
|
mpbird |
|- ( ( T. /\ k e. NN ) -> 0 <_ ( ( F ` k ) - ( J ` k ) ) ) |
| 236 |
235 228
|
breqtrrd |
|- ( ( T. /\ k e. NN ) -> 0 <_ ( ( F oF - J ) ` k ) ) |
| 237 |
6 7 207 208 213 215 232 236
|
climsqz2 |
|- ( T. -> ( F oF - J ) ~~> 0 ) |
| 238 |
|
ovexd |
|- ( T. -> ( ( F oF - J ) oF + J ) e. _V ) |
| 239 |
|
ovexd |
|- ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) e. _V ) |
| 240 |
70
|
recni |
|- -u 2 e. CC |
| 241 |
1 240
|
basellem7 |
|- ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ~~> 1 |
| 242 |
241
|
a1i |
|- ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ~~> 1 ) |
| 243 |
76
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) e. RR ) |
| 244 |
243
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) e. CC ) |
| 245 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) = ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) ) |
| 246 |
161 196 60 60 61 164 245
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ` k ) = ( ( H ` k ) x. ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) ) ) |
| 247 |
6 7 130 239 242 157 244 246
|
climmul |
|- ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ~~> ( ( ( _pi ^ 2 ) / 6 ) x. 1 ) ) |
| 248 |
247 128
|
breqtrdi |
|- ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ~~> ( ( _pi ^ 2 ) / 6 ) ) |
| 249 |
4 248
|
eqbrtrid |
|- ( T. -> J ~~> ( ( _pi ^ 2 ) / 6 ) ) |
| 250 |
215
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) e. CC ) |
| 251 |
218
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( J ` k ) e. CC ) |
| 252 |
214
|
ffnd |
|- ( T. -> ( F oF - J ) Fn NN ) |
| 253 |
|
eqidd |
|- ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) = ( ( F oF - J ) ` k ) ) |
| 254 |
252 225 60 60 61 253 227
|
ofval |
|- ( ( T. /\ k e. NN ) -> ( ( ( F oF - J ) oF + J ) ` k ) = ( ( ( F oF - J ) ` k ) + ( J ` k ) ) ) |
| 255 |
6 7 237 238 249 250 251 254
|
climadd |
|- ( T. -> ( ( F oF - J ) oF + J ) ~~> ( 0 + ( ( _pi ^ 2 ) / 6 ) ) ) |
| 256 |
89 255
|
eqbrtrrd |
|- ( T. -> F ~~> ( 0 + ( ( _pi ^ 2 ) / 6 ) ) ) |
| 257 |
100
|
addlidi |
|- ( 0 + ( ( _pi ^ 2 ) / 6 ) ) = ( ( _pi ^ 2 ) / 6 ) |
| 258 |
256 2 257
|
3brtr3g |
|- ( T. -> seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) ~~> ( ( _pi ^ 2 ) / 6 ) ) |
| 259 |
6 7 12 24 258
|
isumclim |
|- ( T. -> sum_ k e. NN ( k ^ -u 2 ) = ( ( _pi ^ 2 ) / 6 ) ) |
| 260 |
259
|
mptru |
|- sum_ k e. NN ( k ^ -u 2 ) = ( ( _pi ^ 2 ) / 6 ) |