Step |
Hyp |
Ref |
Expression |
1 |
|
tgss |
|- ( ( J e. Top /\ B C_ J ) -> ( topGen ` B ) C_ ( topGen ` J ) ) |
2 |
1
|
3adant3 |
|- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) C_ ( topGen ` J ) ) |
3 |
|
tgtop |
|- ( J e. Top -> ( topGen ` J ) = J ) |
4 |
3
|
3ad2ant1 |
|- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` J ) = J ) |
5 |
2 4
|
sseqtrd |
|- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) C_ J ) |
6 |
|
simp3 |
|- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> J C_ ( topGen ` B ) ) |
7 |
5 6
|
eqssd |
|- ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) = J ) |