| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgss |  |-  ( ( J e. Top /\ B C_ J ) -> ( topGen ` B ) C_ ( topGen ` J ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) C_ ( topGen ` J ) ) | 
						
							| 3 |  | tgtop |  |-  ( J e. Top -> ( topGen ` J ) = J ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` J ) = J ) | 
						
							| 5 | 2 4 | sseqtrd |  |-  ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) C_ J ) | 
						
							| 6 |  | simp3 |  |-  ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> J C_ ( topGen ` B ) ) | 
						
							| 7 | 5 6 | eqssd |  |-  ( ( J e. Top /\ B C_ J /\ J C_ ( topGen ` B ) ) -> ( topGen ` B ) = J ) |