| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basprssdmsets.s |
|- ( ph -> S Struct X ) |
| 2 |
|
basprssdmsets.i |
|- ( ph -> I e. U ) |
| 3 |
|
basprssdmsets.w |
|- ( ph -> E e. W ) |
| 4 |
|
basprssdmsets.b |
|- ( ph -> ( Base ` ndx ) e. dom S ) |
| 5 |
4
|
orcd |
|- ( ph -> ( ( Base ` ndx ) e. dom S \/ ( Base ` ndx ) e. { I } ) ) |
| 6 |
|
elun |
|- ( ( Base ` ndx ) e. ( dom S u. { I } ) <-> ( ( Base ` ndx ) e. dom S \/ ( Base ` ndx ) e. { I } ) ) |
| 7 |
5 6
|
sylibr |
|- ( ph -> ( Base ` ndx ) e. ( dom S u. { I } ) ) |
| 8 |
|
snidg |
|- ( I e. U -> I e. { I } ) |
| 9 |
2 8
|
syl |
|- ( ph -> I e. { I } ) |
| 10 |
9
|
olcd |
|- ( ph -> ( I e. dom S \/ I e. { I } ) ) |
| 11 |
|
elun |
|- ( I e. ( dom S u. { I } ) <-> ( I e. dom S \/ I e. { I } ) ) |
| 12 |
10 11
|
sylibr |
|- ( ph -> I e. ( dom S u. { I } ) ) |
| 13 |
7 12
|
prssd |
|- ( ph -> { ( Base ` ndx ) , I } C_ ( dom S u. { I } ) ) |
| 14 |
|
structex |
|- ( S Struct X -> S e. _V ) |
| 15 |
1 14
|
syl |
|- ( ph -> S e. _V ) |
| 16 |
|
setsdm |
|- ( ( S e. _V /\ E e. W ) -> dom ( S sSet <. I , E >. ) = ( dom S u. { I } ) ) |
| 17 |
15 3 16
|
syl2anc |
|- ( ph -> dom ( S sSet <. I , E >. ) = ( dom S u. { I } ) ) |
| 18 |
13 17
|
sseqtrrd |
|- ( ph -> { ( Base ` ndx ) , I } C_ dom ( S sSet <. I , E >. ) ) |