Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | bastop | |- ( B e. TopBases -> ( B e. Top <-> ( topGen ` B ) = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop | |- ( B e. Top -> ( topGen ` B ) = B ) |
|
2 | tgcl | |- ( B e. TopBases -> ( topGen ` B ) e. Top ) |
|
3 | eleq1 | |- ( ( topGen ` B ) = B -> ( ( topGen ` B ) e. Top <-> B e. Top ) ) |
|
4 | 2 3 | syl5ibcom | |- ( B e. TopBases -> ( ( topGen ` B ) = B -> B e. Top ) ) |
5 | 1 4 | impbid2 | |- ( B e. TopBases -> ( B e. Top <-> ( topGen ` B ) = B ) ) |