Metamath Proof Explorer


Theorem bastop

Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion bastop
|- ( B e. TopBases -> ( B e. Top <-> ( topGen ` B ) = B ) )

Proof

Step Hyp Ref Expression
1 tgtop
 |-  ( B e. Top -> ( topGen ` B ) = B )
2 tgcl
 |-  ( B e. TopBases -> ( topGen ` B ) e. Top )
3 eleq1
 |-  ( ( topGen ` B ) = B -> ( ( topGen ` B ) e. Top <-> B e. Top ) )
4 2 3 syl5ibcom
 |-  ( B e. TopBases -> ( ( topGen ` B ) = B -> B e. Top ) )
5 1 4 impbid2
 |-  ( B e. TopBases -> ( B e. Top <-> ( topGen ` B ) = B ) )