| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basvtxval.s |
|- ( ph -> G Struct X ) |
| 2 |
|
basvtxval.d |
|- ( ph -> 2 <_ ( # ` dom G ) ) |
| 3 |
|
basvtxval.v |
|- ( ph -> V e. Y ) |
| 4 |
|
basvtxval.b |
|- ( ph -> <. ( Base ` ndx ) , V >. e. G ) |
| 5 |
|
structn0fun |
|- ( G Struct X -> Fun ( G \ { (/) } ) ) |
| 6 |
1 5
|
syl |
|- ( ph -> Fun ( G \ { (/) } ) ) |
| 7 |
|
funvtxdmge2val |
|- ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> ( Vtx ` G ) = ( Base ` G ) ) |
| 8 |
6 2 7
|
syl2anc |
|- ( ph -> ( Vtx ` G ) = ( Base ` G ) ) |
| 9 |
1 3 4
|
opelstrbas |
|- ( ph -> V = ( Base ` G ) ) |
| 10 |
8 9
|
eqtr4d |
|- ( ph -> ( Vtx ` G ) = V ) |