Metamath Proof Explorer


Theorem bc0k

Description: The binomial coefficient " 0 choose K " is 0 for a positive integer K. Note that ( 0 _C 0 ) = 1 (see bcn0 ). (Contributed by Alexander van der Vekens, 1-Jan-2018)

Ref Expression
Assertion bc0k
|- ( K e. NN -> ( 0 _C K ) = 0 )

Proof

Step Hyp Ref Expression
1 0nn0
 |-  0 e. NN0
2 nnz
 |-  ( K e. NN -> K e. ZZ )
3 nngt0
 |-  ( K e. NN -> 0 < K )
4 3 olcd
 |-  ( K e. NN -> ( K < 0 \/ 0 < K ) )
5 bcval4
 |-  ( ( 0 e. NN0 /\ K e. ZZ /\ ( K < 0 \/ 0 < K ) ) -> ( 0 _C K ) = 0 )
6 1 2 4 5 mp3an2i
 |-  ( K e. NN -> ( 0 _C K ) = 0 )